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If a connected metric space S is locally separable, then S is separa
ble.1 If a connected, locally connected, metric space S is locally periph
erally separable, then S is separable.2 Furthermore if a connected, 
locally connected, complete metric space S satisfies certain "flatness" 
conditions, it is known to be separable.3 These "flatness" conditions 
are rather strong and involve both im kleinen and im grossen proper
ties, which makes application rather awkward in some cases. If, how
ever, this space S contains no skew curve4 of type 1, then S has a 
certain amount of "flatness," but not quite enough to imply separa
bility as can be seen from the following example. Let S consist of the 
points of the 2-sphere, distance being redefined as follows: (1) if the 
points X and Y of 5 lie on the same great circle through the poles, 
then d(X, Y) is the ordinary distance on the sphere but (2) if the 
points lie on different great circles through the poles, then d(X, Y) 
is the sum of the ordinary distances from each point to the same pole, 
using the pole which gives the smaller sum. The space 5 is a con
nected, locally connected, complete metric space which contains no 
skew curve of type 1 but 5 is not separable. Furthermore, S contains 
no cut point. However, if this last condition is strengthened slightly, 
separability follows as is seen in the following theorem. 

THEOREM 1. Let S denote a locally connected, complete metric space 
such that no pair of points cuts S. If S contains no skew curve of type 1, 
then S is separable. 

PROOF. Suppose, on the contrary, that S is not separable. Let T0 
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