ON THE COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL

PAUL ERDÖS

The cyclotomic polynomial $F_n(x)$ is defined as the polynomial whose roots are the primitive nth roots of unity. It is well known that

$$F_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}.$$

For n < 105 all coefficients of $F_n(x)$ are ± 1 or 0. For n = 105, the coefficient 2 occurs for the first time. Denote by A_n the greatest coefficient of $F_n(x)$ (in absolute value). Schur proved that $\limsup A_n = \infty$. Emma Lehmer¹ proved that $A_n > cn^{1/3}$ for infinitely many n. In fact she proved that infinitely many such n's are of the form pqr with p, q, and r prime. In the present note we are going to prove that $A_n > n^k$ for every k and infinitely many n. This is implied by the still sharper theorem:

THEOREM 1.2 For infinitely many n

$$A_n > \exp \left[c_1 (\log n)^{4/3} \right].$$

Specifically we may take $n = 2 \cdot 3 \cdot 5 \cdot \cdots \cdot p_k$ for sufficiently large k.

Since

$$\max_{|x|=1} |F_n(x)| \leq A_n[\phi(n)+1],$$

Theorem 1 follows at once from the following theorem.

THEOREM 2. For infinitely many n

$$\max_{|x|=1} |F_n(x)| > \exp [c_2(\log n)^{4/3}].$$

For the proof of Theorem 2 we require several lemmas.

LEMMA 1. Let f(x) be a polynomial of highest coefficient 1 of degree m with all its roots on the unit circle. Suppose that in the unit circle f(x) assumes its maximum at x_0 ($|x_0| = 1$), and let y_0 be the root of f(x) closest to x_0 . Then the arc between x_0 and y_0 is not less than π/m ; and if it equals π/m , $f(x) = x^m - 1$.

Received by the editors May 5, 1945, and, in revised form, August 22, 1945.

¹ Bull. Amer. Math. Soc. vol. 42 (1936) p. 389. Reference to the older literature can be found in this paper.

^{*} Throughout the paper c_i denotes a positive constant.