ON THE COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL

PAUL ERDÖS

The cyclotomic polynomial $F_{n}(x)$ is defined as the polynomial whose roots are the primitive nth roots of unity. It is well known that

$$
F_{n}(x)=\prod_{d \mid n}\left(x^{n / d}-1\right)^{\mu(d)}
$$

For $n<105$ all coefficients of $F_{n}(x)$ are ± 1 or 0 . For $n=105$, the coefficient 2 occurs for the first time. Denote by A_{n} the greatest coefficient of $F_{n}(x)$ (in absolute value). Schur proved that $\lim \sup A_{n}=\infty$. Emma Lehmer ${ }^{1}$ proved that $A_{n}>c n^{1 / 3}$ for infinitely many n. In fact she proved that infinitely many such n 's are of the form $p q r$ with p, q, and r prime. In the present note we are going to prove that $A_{n}>n^{k}$ for every k and infinitely many n. This is implied by the still sharper theorem:

Theorem 1.2 For infinitely many n

$$
A_{n}>\exp \left[c_{1}(\log n)^{4 / 8}\right]
$$

Specifically we may take $n=2 \cdot 3 \cdot 5 \cdots p_{b}$ for sufficiently large k.
Since

$$
\max _{|x|=1}\left|F_{n}(x)\right| \leqq A_{n}[\phi(n)+1]
$$

Theorem 1 follows at once from the following theorem.
Theorem 2. For infinitely many n

$$
\max _{|x|=1}\left|F_{n}(x)\right|>\exp \left[c_{2}(\log n)^{1 / 8}\right] .
$$

For the proof of Theorem 2 we require several lemmas.
Lemma 1. Let $f(x)$ be a polynomial of highest coefficient 1 of degree m with all its roots on the unit circle. Suppose that in ihe unit circle $f(x)$ assumes its maximum at $x_{0}\left(\left|x_{0}\right|=1\right)$, and let y_{0} be the root of $f(x)$ closest to x_{0}. Then the arc between x_{0} and y_{0} is not less than π / m; and if it equals $\pi / m, f(x)=x^{m}-1$.

[^0]
[^0]: Received by the editors May 5, 1945, and, in revised form, August 22, 1945.
 ${ }^{1}$ Bull. Amer. Math. Soc. vol. 42 (1936) p. 389. Reference to the older literature can be found in this paper.

 2 Throughout the paper c_{i} denotes a positive constant.

