The proof of Theorem 10.3 is similar, but with obvious modifications.

References

1. Tibor Radó, On convex functions, Trans. Amer. Math. Soc. vol. 37 (1935) pp. 266-285.

2. H. B. Dwight, Tables of integrals and other mathematical data, Macmillan, 1934.

3. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, Berlin, Springer, 1925.

4. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, 1934.

Emmanuel Missionary College

A SIMPLE SUFFICIENT CONDITION THAT A METHOD OF SUMMABILITY BE STRONGER THAN CONVERGENCE

RALPH PALMER AGNEW

1. Introduction. A matrix a_{nk} of real or complex constants determines a transformation

(1)
$$\sigma_n = \sum_{k=1}^{\infty} a_{nk} s_k$$

and a method A of summability by means of which a given sequence s_1, s_2, \cdots is summable to σ if the series in (1) converge and define numbers $\sigma_1, \sigma_2, \cdots$ such that $\sigma_n \rightarrow \sigma$ as $n \rightarrow \infty$. If a sequence s_n is summable A, we say that $A\{s_n\}$ exists and that s_n belongs to the summability field of A. If s_n is summable A to σ , we say that $A\{s_n\} = \sigma$. The method A is regular if $A\{s_n\} = \lim s_n$ whenever $\lim s_n$ exists.

Toeplitz [1911] (reference in bibliography at end of this paper) proved that A is regular if and only if the three conditions

(2)
$$\sum_{k=1}^{\infty} |a_{nk}| \leq M, \qquad n = 1, 2, 3, \cdots,$$

(3)
$$\lim_{n \to \infty} a_{nk} = 0, \qquad k = 1, 2, 3, \cdots,$$

(4)
$$\lim_{n\to\infty} \sum_{k=1}^{\infty} a_{nk} = 1$$

Presented to the Society, November 24, 1945; received by the editors September 8, 1945.