COUNTABLE CONNECTED SPACES

WILLIAM GUSTIN

Introduction. Let \mathfrak{S} be the class of all countable and connected perfectly separable Hausdorff spaces containing more than one point. It is known that an \mathfrak{S}-space cannot be regular or compact. Urysohn, using a complicated identification of points, has constructed the first example of an \mathfrak{S}-space. ${ }^{1}$ Two \mathfrak{S}-spaces, X and X^{*}, more simply constructed and not involving identifications, are presented here. The space X^{*} is a connected subspace of X and contains a dispersion point; that is, the subspace formed from X^{*} by removing this one point is totally disconnected.

1. Sequences. The null sequence or any finite sequence of positive integers will hereafter be called more briefly a sequence. The null sequence or a sequence having an even number of elements is said to be even and a sequence having an odd number of elements is said to be odd. A sequence will usually be denoted by a lower case Greek letter: an arbitrary sequence by α, β, or γ; an arbitrary even sequence by λ, μ, or ν; the null sequence by o. A positive integer will be denoted by a lower case italic letter (not x, y, or z), which may also serve to represent the sequence consisting of that single integer.

The relation $\alpha \geqq i$ signifies that $a \geqq i$ for every element a of α, and $\alpha<i$ that $a<i$ for every element a of α. The null sequence vacuously satisfies both $o \geqq i$ and $o<i$.

The sequence formed by adjoining β to the end of α is denoted by $\alpha \beta$.

Definition. The relation $\beta \supset_{i} \alpha$ is to mean that a sequence α^{\prime} exists such that $\beta=\alpha \alpha^{\prime}$ and $\alpha^{\prime} \geqq i$.

Some immediate consequences of the preceding definitions are:
1.1. $\alpha \supset_{i} \alpha$.
1.2. If $\beta \supset_{j} \alpha$ and $j \geqq i$, then $\beta \supset_{i} \alpha$.
1.3. If $\gamma \supset_{i} \beta$ and $\beta \supset_{i} \alpha$, then $\gamma \supset_{i} \alpha$.
1.4. If $\gamma \supset_{a} \alpha$ and $\gamma \supset_{b} \beta$, then $\beta \supset_{a} \alpha$ or $\alpha \supset_{b} \beta$.

Proof. Let $\gamma \supset_{a} \alpha$ and $\gamma \supset_{b} \beta$; then sequences $\alpha^{\prime}, \beta^{\prime}$ exist such that

[^0]
[^0]: Presented to the Society, November 24, 1945; received by the editors August 24, 1945.
 ${ }^{1}$ Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. vol. 94 (1925) pp. 262-295; see pp. 274-283 for the example.

