COUNTABLE CONNECTED SPACES

WILLIAM GUSTIN

Introduction. Let \mathfrak{S} be the class of all countable and connected perfectly separable Hausdorff spaces containing more than one point. It is known that an \mathfrak{S} -space cannot be regular or compact. Urysohn, using a complicated identification of points, has constructed the first example of an \mathfrak{S} -space.¹ Two \mathfrak{S} -spaces, X and X*, more simply constructed and not involving identifications, are presented here. The space X* is a connected subspace of X and contains a dispersion point; that is, the subspace formed from X* by removing this one point is totally disconnected.

1. Sequences. The null sequence or any finite sequence of positive integers will hereafter be called more briefly a sequence. The null sequence or a sequence having an even number of elements is said to be even and a sequence having an odd number of elements is said to be odd. A sequence will usually be denoted by a lower case Greek letter: an arbitrary sequence by α , β , or γ ; an arbitrary even sequence by λ , μ , or ν ; the null sequence by o. A positive integer will be denoted by a lower case italic letter (not x, y, or z), which may also serve to represent the sequence consisting of that single integer.

The relation $\alpha \ge i$ signifies that $a \ge i$ for every element a of α , and $\alpha < i$ that a < i for every element a of α . The null sequence vacuously satisfies both $o \ge i$ and o < i.

The sequence formed by adjoining β to the end of α is denoted by $\alpha\beta$.

DEFINITION. The relation $\beta \supset_i \alpha$ is to mean that a sequence α' exists such that $\beta = \alpha \alpha'$ and $\alpha' \ge i$.

Some immediate consequences of the preceding definitions are:

1.1. $\alpha \supset_i \alpha$.

1.2. If $\beta \supset_i \alpha$ and $j \ge i$, then $\beta \supset_i \alpha$.

1.3. If $\gamma \supset_i \beta$ and $\beta \supset_i \alpha$, then $\gamma \supset_i \alpha$.

1.4. If $\gamma \supset_a \alpha$ and $\gamma \supset_b \beta$, then $\beta \supset_a \alpha$ or $\alpha \supset_b \beta$.

PROOF. Let $\gamma \supset_a \alpha$ and $\gamma \supset_b \beta$; then sequences α' , β' exist such that

Presented to the Society, November 24, 1945; received by the editors August 24, 1945.

¹ Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. vol. 94 (1925) pp. 262–295; see pp. 274–283 for the example.