A NOTE ON THE FIRST NORMAL SPACE OF A V_m IN AN R_n

YUNG-CHOW WONG¹

Let N be the normal plane at a point p of a surface V_2 in a Euclidean 4-space R_4 . Calapso² proved that the hypersphere S in R_4 passing through p and with center c in N cuts V_2 in a curve with a double point at p, at which the two tangents to the curve coincide if and only if c lies on the Kommerell conic. The Kommerell conic is the locus of the point in which N (at p) is cut by the neighboring normal planes of V_2 .

The purpose of this note is to generalize this result to the case of a subspace V_m in a Euclidean *n*-space R_n . To do this we shall first state some definitions and known results concerning the first (or principal) normal space of V_m in R_n .³

Let X^k $(k=1, \dots, n)$ be the rectangular cartesian coordinates in R_n and let

(1)
$$X^k = x^k(u^a)$$
 $(a, b, c = 1, \cdots, m)$

be the equations of a V_m . Put

(2)
$$B_a^k = \partial_a x^k \equiv \partial x^k / \partial u^a.$$

Then the fundamental tensor and curvature tensor of V_m in R_n are, respectively,

$$(3) 'g_{cb} = \sum_{k} B_c^k B_b^k,$$

(4)
$$H_{cb}^{\cdot \cdot k} = \partial_c B_b^k - {}^{\prime} \Gamma_{cb}^a B_{a}^k,$$

where T^a_{cb} is the Christoffel symbol of the second kind for V_m .

Let us consider the figure surrounding a certain point p of V_m . We have at p a tangent *m*-plane and a normal (n-m)-plane N. Let i^a be the unit tangent vector at p of an arbitrary curve in V_m passing through p. Then the component in N of the first curvature vector of the curve with respect to R_n is

Received by the editors May 29, 1945.

¹ Harrison research fellow at the University of Pennsylvania.

² R. Calapso, *Sulle reti di Voss di uno spazio lineare quadri dimensionale*, Rendiconti Seminario matematico Roma (4) vol. 2 (1938) pp. 276–311.

⁸ See J. A. Schouten and D. J. Struik, *Einführung in der neueren Methoden der* Differentialgeometrie II, Groningen, 1938, chap. 3; D. Perepelkine, Sur la courbure et les espaces normaux d'une V_m dans R_n , Rec. Math. (Mat. Sbornik) N.S. vol. 42 (1935) pp. 81-100.