A NOTE ON THE FIRST NORMAL SPACE OF

A V_{m} IN AN R_{n}
YUNG-CHOW WONG ${ }^{1}$
Let N be the normal plane at a point p of a surface V_{2} in a Euclidean 4 -space R_{4}. Calapso ${ }^{2}$ proved that the hypersphere S in R_{4} passing through p and with center c in N cuts V_{2} in a curve with a double point at p, at which the two tangents to the curve coincide if and only if c lies on the Kommerell conic. The Kommerell conic is the locus of the point in which N (at p) is cut by the neighboring normal planes of V_{2}.

The purpose of this note is to generalize this result to the case of a subspace V_{m} in a Euclidean n-space R_{n}. To do this we shall first state some definitions and known results concerning the first (or principal) normal space of V_{m} in $R_{n}{ }^{3}{ }^{3}$

Let $X^{k}(k=1, \cdots, \cdot n)$ be the rectangular cartesian coordinates in R_{n} and let

$$
\begin{equation*}
X^{k}=x^{k}\left(u^{a}\right) \quad(a, b, c=1, \cdots, m) \tag{1}
\end{equation*}
$$

be the equations of a V_{m}. Put

$$
\begin{equation*}
B_{a}^{k}=\partial_{a} x^{k} \equiv \partial x^{k} / \partial u^{a} . \tag{2}
\end{equation*}
$$

Then the fundamental tensor and curvature tensor of V_{m} in R_{n} are, respectively,

$$
\begin{align*}
{ }_{g_{c b}} & =\sum_{k} B_{c}^{k} B_{b}^{k}, \tag{3}\\
\dot{H_{c b}^{k}} & =\partial_{c} B_{b}^{k}-{ }^{\prime} \Gamma_{c b}^{a} B_{a}^{k}, \tag{4}
\end{align*}
$$

where ' $\Gamma_{c b}^{a}$ is the Christoffel symbol of the second kind for V_{m}.
Let us consider the figure surrounding a certain point p of V_{m}. We have at p a tangent m-plane and a normal $(n-m)$-plane N. Let i^{a} be the unit tangent vector at p of an arbitrary curve in V_{m} passing through p. Then the component in N of the first curvature vector of the curve with respect to R_{n} is

[^0]
[^0]: Received by the editors May 29, 1945.
 ${ }^{1}$ Harrison research fellow at the University of Pennsylvania.
 ${ }^{2}$ R. Calapso, Sulle reti di Voss di uno spazio lineare quadri dimensionale, Rendiconti Seminario matematico Roma (4) vol. 2 (1938) pp. 276-311.
 ${ }^{3}$ See J. A. Schouten and D. J. Struik, Einfuihrung in der neueren Methoden der Differentialgeometrie II, Groningen, 1938, chap. 3; D. Perepelkine, Sur la courbure et les espaces normaux d'une V_{m} dans R_{n}, Rec. Math. (Mat. Sbornik) N.S. vol. 42 (1935) pp. 81-100.

