SOLUTION OF A CLASS OF SINGULAR INTEGRAL EQUATIONS

ERIC REISSNER

The following class of integral equations may be of some importance in the applications:

$$
\begin{equation*}
g(x)=\frac{1}{\pi} \oint_{-1}^{1} f(\xi)\left\{\frac{1}{\xi-x}+\sum_{n=0}^{N} c_{n}(\xi-x)^{2 n+1}\right\} d \xi \tag{1}
\end{equation*}
$$

The symbol \varnothing indicates that the principal value of the integral is to be taken and the coefficients c_{n} are given constants. The special case of all $c_{n}=0$ has been dealt with extensively, for instance by Glauert [1], Fuchs [2], Hamel [3], Schroeder [4] and Söhngen [5]. ${ }^{1}$ The values of the coefficients c_{n} might be determined by the condition that a given kernel $K(\xi-x)$, for instance $K=1 / \sinh (\xi-x)$, is approximated as nearly as possible by the kernel of equation (1).

The purpose of the present note is to derive the solution of (1) for a finite number of nonvanishing c_{n}. The method of solution is an extension of the method applicable when all $c_{n}=0$.

Equation (1) is first transformed by the substitutions

$$
\begin{align*}
x & =\cos \phi, & \xi & =\cos \theta \tag{2}\\
g(x) & =G(\phi), & f(\xi) & =F(\theta) \tag{3}
\end{align*}
$$

into

$$
\begin{equation*}
G(\phi)=\frac{1}{\pi} \oint_{0}^{\pi} F(\theta)\left\{\frac{1}{\cos \theta-\cos \phi}+\sum_{n=0}^{N} c_{n}(\cos \theta-\cos \phi)^{2 n+1}\right\} \sin \theta d \theta . \tag{4}
\end{equation*}
$$

The function $G(\phi)$ is thought to be developed in the interval $(0, \pi)$ in the following form :

$$
\begin{equation*}
\sin \phi G(\phi)=\sum_{m=1}^{\infty} B_{m} \sin m \phi \tag{5}
\end{equation*}
$$

It is then to be shown that the following representation of $F(\theta)$

$$
\begin{equation*}
\sin \theta F(\theta)=\sum_{m=0}^{\infty} A_{m} \cos m \theta \tag{6}
\end{equation*}
$$

permits the explicit determination of the unknown coefficients A_{m} in

Received by the editors May 5, 1945.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

