SOLUTION OF A CLASS OF SINGULAR INTEGRAL EQUATIONS

ERIC REISSNER

The following class of integral equations may be of some importance in the applications:

(1)
$$g(x) = \frac{1}{\pi} \oint_{-1}^{1} f(\xi) \left\{ \frac{1}{\xi - x} + \sum_{n=0}^{N} c_n (\xi - x)^{2n+1} \right\} d\xi.$$

The symbol \mathscr{I} indicates that the principal value of the integral is to be taken and the coefficients c_n are given constants. The special case of all $c_n=0$ has been dealt with extensively, for instance by Glauert [1], Fuchs [2], Hamel [3], Schroeder [4] and Söhngen [5].¹ The values of the coefficients c_n might be determined by the condition that a given kernel $K(\xi-x)$, for instance $K=1/\sinh(\xi-x)$, is approximated as nearly as possible by the kernel of equation (1).

The purpose of the present note is to derive the solution of (1) for a finite number of nonvanishing c_n . The method of solution is an extension of the method applicable when all $c_n=0$.

Equation (1) is first transformed by the substitutions

(2)
$$x = \cos \phi, \qquad \xi = \cos \theta,$$

(3)
$$g(x) = G(\phi), \qquad f(\xi) = F(\theta)$$

into

(4)
$$G(\phi) = \frac{1}{\pi} \oint_0^{\pi} F(\theta) \left\{ \frac{1}{\cos \theta - \cos \phi} + \sum_{n=0}^N c_n (\cos \theta - \cos \phi)^{2n+1} \right\} \sin \theta d\theta.$$

The function $G(\phi)$ is thought to be developed in the interval $(0, \pi)$ in the following form:

(5)
$$\sin \phi G(\phi) = \sum_{m=1}^{\infty} B_m \sin m\phi.$$

It is then to be shown that the following representation of $F(\theta)$

(6)
$$\sin \theta F(\theta) = \sum_{m=0}^{\infty} A_m \cos m\theta$$

permits the explicit determination of the unknown coefficients A_m in

Received by the editors May 5, 1945.

¹ Numbers in brackets refer to the references cited at the end of the paper.