ON A LEMMA OF LITTLEWOOD AND OFFORD

P. ERDÖS

Recently Littlewood and Offord ${ }^{1}$ proved the following lemma: Let $x_{1}, x_{2}, \cdots, x_{n}$ be complex numbers with $\left|x_{i}\right| \geqq 1$. Consider the sums $\sum_{k=1}^{n} \epsilon_{k} x_{k}$, where the ϵ_{k} are ± 1. Then the number of the sums $\sum_{k=1}^{n} \epsilon_{k} x_{k}$ which fall into a circle of radius r is not greater than

$$
c r 2^{n}(\log n) n^{-1 / 2}
$$

In the present paper we are going to improve this to

$$
c r 2^{n} n^{-1 / 2}
$$

The case $x_{i}=1$ shows that the result is best possible as far as the order is concerned.

First we prove the following theorem.
Theorem 1. Let $x_{1}, x_{2}, \cdots, x_{n}$ be n real numbers, $\left|x_{i}\right| \geqq 1$. Then the number of sums $\sum_{k=1}^{n} \epsilon_{k} x_{k}$ which fall in the interior of an arbitrary interval I of length 2 does not exceed $C_{n, m}$ where $m=[n / 2]$. ($[x]$ denotes the integral part of x.)

Remark. Choose $x_{i}=1, n$ even. Then the interval $(-1,+1)$ contains $C_{n, m}$ sums $\sum_{k-1}^{n} \epsilon_{k} x_{k}$, which shows that our theorem is best possible.

We clearly can assume that all the x_{i} are not less than 1 . To every $\operatorname{sum} \sum_{k=1}^{n} \epsilon_{k} x_{k}$ we associate a subset of the integers from 1 to n as follows: k belongs to the subset if and only if $\epsilon_{k}=+1$. If two sums $\sum_{k=1}^{n} \epsilon_{k} x_{k}$ and $\sum_{k=1}^{n} \epsilon_{k}^{\prime} x_{k}$ are both in I, neither of the corresponding subsets can contain the other, for otherwise their difference would clearly be not less than 2 . Now a theorem of Sperner ${ }^{2}$ states that in any collection of subsets of n elements such that of every pair of subsets neither contains the other, the number of sets is not greater than $C_{n, m}$, and this completes the proof.

An analogous theorem probably holds if the x_{i} are complex numbers, or perhaps even vectors in Hilbert space (possibly even in a Banach space). Thus we can formulate the following conjecture.

Conjecture. Let $x_{1}, x_{2}, \cdots, x_{n}$ be n vectors in Hilbert space, $\left\|x_{i}\right\| \geqq 1$. Then the number of sums $\sum_{k=1}^{n} \epsilon_{k} x_{k}$ which fall in the interior of an arbitrary sphere of radius 1 does not exceed $C_{n, m}$.

[^0]
[^0]: Received by the editors March 28, 1945.
 ${ }^{1}$ Rec. Math. (Mat. Sbornik) N.S. vol. 12 (1943) pp. 277-285.
 ${ }^{2}$ Math. Zeit. vol. 27 (1928) pp. 544-548.

