tion law. (2) For each $n \geqq 2$ there is an n-sided convex polygon of maximal length inscribed in such a curve. (Received August 9, 1945.)
237. M. M. Day: Polygons circumscribed about closed convex curves.

An earlier abstract ($50-5-132$) announced a proof without use of fixed point theorems of the following result. If C is a symmetric closed convex curve, there exists a parallelogram P circumscribed about C so that the midpoint of each side of C is on P. Using very elementary minimal area methods this result is extended to polygons of an arbitrary number of sides, and to polyhedra about convex bodies in Euclidean space of any finite dimension. In higher dimensions the phrase "midpoint of each side" is replaced by "centroid of each face." (Received August 9, 1945.)
238. H. P. Pettit: The tangents at certain multiple points on a curve $C_{2 m n}$.

In a paper published in the Tôhoku Mathematical Journal in 1927, the author discussed the construction of a curve $C_{2 m n}$ of order $2 m n$ by the use of two pencils of lines with centers A_{1}, A_{3}, related by means of two base curves C_{n}, C_{m} of orders n and m, respectively, and an auxiliary pencil with center A_{2}. It was shown that the line $A_{1} A_{2}$ meets C_{m} in $m n$-fold points of $C_{2 m n}$. In the present paper, it is shown that certain projective relationships yield the following method of determining the tangents at such an n-fold point: Project the points in which $A_{1} A_{2}$ meets C_{n} from the point of intersection of $A_{1} A_{3}$ with the tangent to C_{m} at the point in question, thus determining n points on $A_{2} A_{3}$. These points are projected from the n-fold point in the desired tangents. (Received August 6, 1945.)
239. H. P. Pettit: The tangents at certain ordinary points on a curve $C_{2 m n}$.

As shown by the author in a previous paper published in the Tohoku Mathematical Journal in 1927, a curve of order $2 m n$ is generated by means of two pencils of lines related by means of two base curves of orders m and n respectively and an auxiliary pencil. The generated curve was shown to pass through all common points of the base curves. This paper discusses a method of constructing the tangents to the generated curve at these common points. There is shown to be a projective relationship between the tangents to the base curves at the common point and the tangent to the generated curve, which results in the following. If A_{1}, A_{2}, A_{3} are the vertices of the first, auxiliary, and second pencils, and P is the common point of the base curves C_{1}, C_{3}, determine K_{1} in which the tangent to C_{3} at P meets $A_{2} A_{3}$ and the point K_{3} in which the tangent to C_{1} at P meets $A_{1} A_{2}$. Draw the line $K_{1} K_{3}$ meeting $A_{1} A_{3}$ in T. The line $P T$ is the required tangent to the generated curve. (Received May 26, 1945.)

Logic and Foundations

240. N. D. Nelson: Recursive functions and intuitionistic number theory. Preliminary report.

It is shown that the interpretation by the intuitionistic truth notion of realizability of Kleene (Bull. Amer. Math. Soc. abstract 48-1-85) satisfies certain formal systems of intuitionistic number theory. Further results are obtained which complete reasoning outlined by Kleene (loc. cit. and Trans. Amer. Math. Soc. vol. 53 (1943) pp.41-73,

