A NOTE ON SYSTEMS OF HOMOGENEOUS ALGEBRAIC EQUATIONS

RICHARD BRAUER

1. Introduction. Consider a system of algebraic equations

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \tag{1}\\
& \cdot \cdots \cdots \cdot \\
& f_{h}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0,
\end{align*}
$$

where f_{i} is a homogeneous polynomial of degree r_{i} with coefficients belonging to a given field K. We interpret $x_{1}, x_{2}, \cdots, x_{n}$ as homogeneous coordinates in an ($n-1$)-dimensional projective space. When $n>h$, the system (1) has non-trivial solutions ($x_{1}, x_{2}, \cdots, x_{n}$) in an algebraically closed extension field of K, but there may not exist any such solutions in K itself. It is, in general, extremely difficult to decide whether adjunction of irrationalities of a certain type to K is sufficient to guarantee the existence of non-trivial solutions of (1) in the extended field. However, the situation is much simpler, when n is very large, in the sense that n lies above a certain expression depending on the number of equations h and the degrees $r_{1}, r_{2}, \cdots, r_{h}$.

We shall show:
Theorem A. For any system of h positive degrees $r_{1}, r_{2}, \cdots, r_{h}$ there exists an integer $\Phi\left(r_{1}, r_{2}, \cdots, r_{h}\right)$ such that for $n \geqq \Phi\left(r_{1}, r_{2}, \cdots, r_{h}\right)$ the system (1) has a non-trivial solution in a soluble extension field K_{1} of K. The field K_{1} may be chosen such that its degree N_{1} over K lies below a value depending on $r_{1}, r_{2}, \cdots, r_{h}$ alone and that any prime factor of N_{1} is at most equal to $\max \left(r_{1}, r_{2}, \cdots, r_{h}\right)$.

This Theorem A is evidently contained in the following theorem.
Theorem B. For any system of positive integers $r_{1}, r_{2}, \cdots, r_{h}$ and any integer $m \geqq 0$, there exists an integer $\Phi\left(r_{1}, r_{2}, \cdots, r_{h} ; m\right)$ with the following property: For $n \geqq \Phi\left(r_{1}, \cdots, r_{h} ; m\right)$, there exists a soluble extension field K_{2} of K such that all points $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ of an m-dimensional linear manifold L, defined in K_{2}, satisfy the equations (1). Here K_{2} may be chosen so that its degree N_{2} over K lies below a bound depending on $r_{1}, r_{2}, \cdots, r_{h}$ and m and that no prime factor of N_{2} exceeds $\max \left(r_{1}, r_{2}, \cdots, r_{h}\right)$.

Presented to the Society, September 17, 1945; received by the editors July 17, 1945.

