dendron with respect to its elements, and (3) if g and h are elements of G and H respectively, the common part of g and h exists and is totally disconnected. Then W contains a point at which G is hereditarily non-equicontinuous.

PROOF. Obtain g_e , AB, C, ρ , and g as in Theorem 7. Of every countable sequence of different elements of G having a subset of g as a limiting set, all but a finite number separate g from g_e . Hence G is hereditarily non-equicontinuous at C.

References

1. Bing, R. H., Concerning simple plane webs, submitted to Trans. Amer. Math. Soc.

2. Moore, R. L., Concerning continua which have dendratomic subsets, Proc. Nat. Acad. Sci. U. S. A. vol. 29 (1943) pp. 384-389.

3. ——, Concerning webs in the plane, Proc. Nat. Acad. Sci. U. S. A. vol. 29 (1943) pp. 389–393.

The University of Texas

DIMENSIONAL TYPES

A. D. WALLACE

Let H and S be topological spaces. We say that H is of dimensional type S (symbol: D_S) if for each closed set X and mapping $f: X \rightarrow S$ there exists an extension $\overline{f}: H \rightarrow S$.

It is clear that (from a result due to Hurewicz [1, p. 83]) when H is separable metric and S is an *n*-sphere, then H can be of dimensional type S if and only if dim $H \leq n$. For simplicity we write D_n for D_s when S is an *n*-sphere. It is, of course, possible to define dim H as the least integer n for which H is of type D_n even when H is not separable metric. But this seems to be open to objection except in certain cases (cf. (d) below).

It is at once clear that we have:

(a) If H is of type D_s then so also is any closed subset.

(b) If the closed sets H_1 and H_2 are of type D_s then so also is the set H_1+H_2 .

As a matter of notation we may suppose that $H=H_1+H_2$. Let $f: X \rightarrow S$. Several cases may arise of which we shall consider only the

Presented to the Society, September 17, 1945; received by the editors June 13, 1945.