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dendron with respect to its elements, and (3) if g and h are elements of G 
and H respectively, the common part of g and h exists and is totally dis
connected. Then W contains a point at which G is hereditarily non-
equicontinuous. 

PROOF. Obtain ge, AB, C, p, and g as in Theorem 7. Of every count
able sequence of different elements of G having a subset of g as a 
limiting set, all but a finite number separate g from g«. Hence G is 
hereditarily non-equicontinuous at C. 
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Let H and 5 be topological spaces. We say that H is of dimensional 
type S (symbol: Ds) if for each closed set X and mapping ƒ :X~*S 
there exists an extension ƒ iH-^S. 

I t is clear tha t (from a result due to Hurewicz [ l , p. 83]) when H 
is separable metric and 5 is an w-sphere, then H can be of dimensional 
type S if and only if dim H<n. For simplicity we write Dn for Ds 
when S is an w-sphere. I t is, of course, possible to define dim H as 
the least integer n for which H is of type Dn even when H is not sepa
rable metric. But this seems to be open to objection except in certain 
cases (cf. (d) below). 

I t is at once clear that we have : 
(a) If H is of type Ds then so also is any closed subset. 
(b) If the closed sets Hi and H2 are of type Ds then so also is the set 

As a matter of notation we may suppose that H — H1+H2» Let 
f:X-*S. Several cases may arise of which we shall consider only the 
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