SOME INVARIANTS OF CERTAIN PAIRS OF HYPERSURFACES

CHUAN-CHIH HSIUNG

Introduction. It is known $[8, 9]^1$ that if two surfaces in ordinary space have a common tangent plane at an ordinary point, then the ratio of their total curvatures at this point is a projective invariant, and the theorem holds true similarly for hyperspaces.² In connection with this theorem and the investigation of Bouton [2], Buzano [3] and Bompiani [1] have shown the existence of a projective invariant, together with metric and projective characterizations, determined by the neighborhood of the second order of two surfaces S, S^* at two ordinary points O, O^* in ordinary space under the conditions that the tangent planes of the surfaces S, S^* at the points O, O^* be distinct and have OO^* for the common line. Furthermore, the other case in which the tangent planes of the surfaces S, S^* at the points O, O^* are coincident⁸ has been considered in recent papers of the author [6, 7].

It is the purpose of the present paper to generalize the results of the two cases mentioned above.

Let V_{n-1} , V_{n-1}^* be two hypersurfaces in a space S_n of n dimensions, and t_{n-1} , t_{n-1}^* the tangent hyperplanes of the hypersurfaces V_{n-1} , V_{n-1}^* at two ordinary points O, O^* . For the subsequent discussion it is convenient to assume in Chapter I that the tangent hyperplanes t_{n-1} , t_{n-1}^* are coincident. We can (§1), as in ordinary space, determine a projective invariant by the neighborhood of the second order of the hypersurfaces V_{n-1} , V_{n-1}^* at the points O, O^* ; and the projective and metric characterizations of this invariant are given in the next two sections.

Chapter II treats of the case in which the tangent hyperplanes t_{n-1} , t_{n-1}^* are distinct, and the common tangent flat space t_{n-2} of t_{n-1} , t_{n-1}^* contains the line OO^* . We first (§4) show by analysis the existence of two projective invariants determined by the neighbor-

Presented to the Society, February 26, 1945; received by the editors October 3, 1944, and, in revised form, March 19, 1945.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

² The simple projective characterizations of this invariant were given by C. Segre [10] for two plane curves and by P. Buzano [4] for two surfaces in space S_n (n>2). On the other hand, A. Terracini [11] also interpreted projectively this invariant by virtue of the conception of density of dualistic correspondences.

⁸ It should be noted that for two plane curves having a common tangent at two ordinary points no projective invariant can be determined by the neighborhood of the second order of the two curves at these points. See my paper [5].