THE EXISTENCE OF ANORMAL CHAINS

DAVID BLACKWELL

1. Introduction. Let \bar{B} be a Borel field of subsets of a space X, and let $P(x, E)$ be for fixed x a probability measure on \bar{B} and for fixed E a \bar{B}-measurable function of $x . P(x, E)$ may be considered as representing the transition probability of going from x into E in a single trial. Denote by Ω the space of sequences $\omega:\left(x_{0}, x_{1}, \cdots\right)$ where $x_{i} \in X$ and by \bar{E} the Borel field of subsets of Ω determined by all sets

$$
\left\{x_{i} \in E\right\}, \quad \text { where } \quad E \in \bar{B}, \quad i=1,2, \cdots
$$

Doob [2, pp. 102-103] ${ }^{1}$ has shown that there exists for each $x \in X$ a probability measure $P_{x}(S)$ defined on \bar{E} such that for every P_{x}-integrable function $f\left(x_{1}, \cdots, x_{n}\right)$

$$
\begin{equation*}
\int f(\omega) d P_{x}=\iint \cdots \int f\left(x_{1}, \cdots, x_{n}\right) d P\left(x_{n-1}, x_{n}\right) \cdots d P\left(x, x_{1}\right) \tag{1}
\end{equation*}
$$

that Ω with the measure P_{x} is a Markoff process, that is, $E\left(x_{1}, \cdots, x_{n} ; g\right)$ $=E\left(x_{n} ; g\right)$ where $g=g\left(x_{n+1}, x_{n+2}, \cdots\right)$ and the E 's denote conditional expectations with respect to the indicated variables, and that $E\left(x_{1}, \cdots, x_{r} ; f\right)$ is the function obtained by carrying out the first $n-r$ integrations in (1).

Write $Q(x, E)=P_{x}\left(\lim \sup \left\{x_{i} \in E\right\}\right)$, so that $Q(x, E)$ represents the probability of entering E infinitely often, starting from x. Following Doblin [1, p. 68 et seq.] we make the following definitions for sets of $\bar{B}: E$ is inessential if $Q(x, E)=0$ for all x, and essential otherwise. An essential set is improperly essential if it is a denumerable sum of inessential sets, and absolutely essential otherwise. A finite or denumerable sum of improperly essential sets is consequently improperly esessential. E is closed if $P(x, E)=1$ for all $x \in E$, and a closed set is indecomposable if it does not contain two disjunct non-empty closed subsets. An absolutely essential indecomposable set is said to be normal if it contains a closed set which contains no improperly essential subsets and anormal otherwise. If X is a normal set, we shall say that the Markoff chain determined by $P(x, E)$ is a normal chain.

Doblin [1] has obtained for normal chains many elegant results which are considerably more complicated for the anormal case. For example [1, p. 81] in the normal case there exists a closed set G such

[^0]
[^0]: Received by the editors September 16, 1944.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

