ON CERTAIN VARIATIONS OF THE HARMONIC SERIES

PAUL ERDÖS AND IVAN NIVEN

Consider any block of terms from the harmonic series

$$
\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{n+k-1}=S(n, k) \quad(n \geqq 1, k \geqq 1) .
$$

Define the integer k_{2} by the relation ${ }^{1}$

$$
\begin{equation*}
S\left(n+k, k_{2}\right)<S(n, k)<S\left(n+k, k_{2}+1\right), \tag{1}
\end{equation*}
$$

and similarly k_{3}, k_{4}, \cdots by

$$
\begin{align*}
& S\left(n+k+k_{2}, k_{3}\right)<S\left(n+k, k_{2}\right)<S\left(n+k+k_{2}, k_{3}+1\right), \tag{2}\\
& S\left(n+k+k_{2}+k_{3}, k_{4}\right)<S\left(n+k+k_{2}, k_{3}\right) \tag{3}\\
&<S\left(n+k+k_{2}+k_{3}, k_{4}+1\right),
\end{align*}
$$

and so on. We shall study the series

$$
\begin{align*}
S(n, k)-S\left(n+k, k_{2}\right)+ & S\left(n+k+k_{2}, k_{3}\right) \\
& -S\left(n+k+k_{2}+k_{3}, k_{4}\right)+\cdots . \tag{4}
\end{align*}
$$

Theorem. The series (4) is convergent if and only if $k=k_{2}$.
Lemma 1. $\log (1+k / n)<S(n, k)<\log (1+2 k /(2 n-1))$.
The inequality on the left arises from the usual comparison of the harmonic series with the integral of the function $1 / x$. To prove the other inequality, we note that the convexity of the function $1 / x$ implies

$$
\int_{n-1 / 2}^{n+1 / 2} \frac{d x}{x}>\frac{1}{n} \quad \text { or } \quad \log \frac{2 n+1}{2 n-1}>\frac{1}{n} .
$$

We replace n by $n+1, n+2, \cdots, n+k-1$ in the latter inequality and add the results.

Lemma 2. If $k=k_{2}$, then $k=k_{j}$ with $j>2$, and the series(4) converges.
We need prove only that $k=k_{3}$. Since $k>k_{3}$ is not possible, let us

[^0]
[^0]: Received by the editors October 8, 1944.
 ${ }^{1}$ It is not possible that $S(n, k)=S\left(n+k, k_{2}\right)$. For let h be the unique integer in the range ($n, n+k+k_{2}-1$) which is divisible by the highest power of 2 , say 2^{r} r. Let m be the 1.c.m. of all the odd divisors of $n, n+1, \cdots, n+k+k_{2}-1$. Then $2^{r-1} m S(n, k)$ $=2^{r-1} m S\left(n+k, k_{2}\right)$ is an equation involving $k+k_{2}-1$ integers and the one fraction $m 2^{r-1} / h$.

