ON CERTAIN VARIATIONS OF THE HARMONIC SERIES

PAUL ERDÖS AND IVAN NIVEN

Consider any block of terms from the harmonic series

$$\frac{1}{n} + \frac{1}{n+1} + \cdots + \frac{1}{n+k-1} = S(n, k) \qquad (n \ge 1, k \ge 1).$$

Define the integer k_2 by the relation¹

(1)
$$S(n + k, k_2) < S(n, k) < S(n + k, k_2 + 1),$$

and similarly k_3 , k_4 , \cdots by

(2)
$$S(n + k + k_2, k_3) < S(n + k, k_2) < S(n + k + k_2, k_3 + 1),$$

(3) $S(n + k + k_2 + k_3, k_4) < S(n + k + k_2, k_3) < S(n + k + k_2 + k_3, k_4 + 1),$

and so on. We shall study the series

(4)
$$S(n, k) - S(n + k, k_2) + S(n + k + k_2, k_3) - S(n + k + k_2 + k_3, k_4) + \cdots$$

THEOREM. The series (4) is convergent if and only if $k = k_2$.

LEMMA 1. $\log (1+k/n) < S(n, k) < \log (1+2k/(2n-1)).$

The inequality on the left arises from the usual comparison of the harmonic series with the integral of the function 1/x. To prove the other inequality, we note that the convexity of the function 1/x implies

$$\int_{n-1/2}^{n+1/2} \frac{dx}{x} > \frac{1}{n} \quad \text{or} \quad \log \frac{2n+1}{2n-1} > \frac{1}{n} \cdot$$

We replace n by n+1, n+2, \cdots , n+k-1 in the latter inequality and add the results.

LEMMA 2. If $k = k_2$, then $k = k_j$ with j > 2, and the series (4) converges.

We need prove only that $k = k_3$. Since $k > k_3$ is not possible, let us

Received by the editors October 8, 1944.

¹ It is not possible that $S(n, k) = S(n+k, k_2)$. For let *h* be the unique integer in the range $(n, n+k+k_2-1)$ which is divisible by the highest power of 2, say 2^r. Let *m* be the l.c.m. of all the odd divisors of $n, n+1, \dots, n+k+k_2-1$. Then $2^{r-1}mS(n, k) = 2^{r-1}mS(n+k, k_2)$ is an equation involving $k+k_2-1$ integers and the one fraction $m2^{r-1}/h$.