NOTE ON CONVEX CURVES ON THE HYPERBOLIC PLANE

L. A. SANTALÓ

1. Introduction. In a previous note [5] ${ }^{1}$) we have obtained some properties referring to convex curves on the sphere. Following an analogous way our purpose is now to obtain the same properties for convex curves on a surface of constant negative curvature $K=-1$, or, what is equivalent, for convex curves on the hyperbolic plane.

In $\S \S 6$ and 7 we consider the curves of constant breadth, for which we obtain the formula (7.3) which relates the length L and area F with the breadth α.

For the curves which are not of constant breadth the formula (4.5), which contains (7.3) as a particular case, holds. But (4.5) is true only if we suppose that the curve has in all its points geodesic curvature κ_{g} grèater than one.
2. Definitions. A closed curve C on a surface of constant negative curvature $K=-1$ is said to be convex when it cannot be cut by any geodesic in more than two points, except that a complete arc of geodesic may belong to the curve. Any closed convex curve C has a finite length L and bounds a finite area F. In the following, unless otherwise specified, we shall suppose that C is composed of a finite number of arcs each with continuous geodesic curvature κ_{g}.

Let ω_{i} be the exterior angles which these arcs form at the vertices of C. Then we have the Gauss-Bonnet formula [3, p. 191],

$$
\begin{equation*}
\int_{C} \kappa_{0} d s+\sum \omega_{i}=2 \pi+F \tag{2.1}
\end{equation*}
$$

If a point O on C is taken as origin, any point A of C can be determined by the length of the arc $O A=s$ or by the angle τ defined by

$$
\begin{equation*}
\tau=\int_{0}^{s} \kappa_{g} d s+\sum_{s} \omega_{i} \tag{2.2}
\end{equation*}
$$

where $\sum_{8} \omega_{i}$ is extended over all the vertices of C contained in the $\operatorname{arc} O A$.

Any geodesic with only one common point or with a complete arc in common with C is called a "geodesic of support" of C. In each

[^0]
[^0]: Received by the editors November 18, 1944.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

