## A NOTE ON HYPERGEODESICS AND CANONICAL LINES

M. L. MacQueEn

In this note we introduce two families of hypergeodesics on a nonruled surface in ordinary projective space. Consideration of the properties of these hypergeodesics leads to certain geometrical constructions which yield canonical lines of the first kind from a given canonical line of the second kind.

We shall assume that the differential equations of a non-ruled surface $S$ are written in the Fubini canonical form ${ }^{1}$
(1)

$$
\begin{equation*}
x_{u u}=p x+\theta_{u} x_{u}+\beta x_{v}, \quad x_{v v}=q x+\gamma x_{u}+\theta_{v} x_{v} \quad(\theta=\log \beta \gamma) . \tag{1}
\end{equation*}
$$

We select an ordinary point $P_{x}$ of the surface $S$ as one vertex of the usual local tetrahedron of reference. When a curve $C_{\lambda}$ through the point $P_{x}$ is regarded as being imbedded in the one-parameter family of curves represented on $S$ by the equation

$$
\begin{equation*}
d v-\lambda(u, v) d u=0 \tag{2}
\end{equation*}
$$

the osculating plane at the point $P_{x}$ of the curve $C_{\lambda}$ has the local equation

$$
\begin{equation*}
2 \lambda\left(\lambda x_{2}-x_{3}\right)+\left(\lambda^{\prime}+\beta-\theta_{u} \lambda+\theta_{v} \lambda^{2}-\gamma \lambda^{3}\right) x_{4}=0, \tag{3}
\end{equation*}
$$

in which we have placed $\lambda^{\prime}=\lambda_{u}+\lambda_{v}$.
It will be recalled that two lines $l_{1}(a, b), l_{2}(a, b)$ are reciprocal lines ${ }^{2}$ at a point $P_{x}$ of a surface if the line $l_{1}(a, b)$ joins the point $P_{x}$ and the point $y$ defined by placing

$$
y=-a x_{u}-b x_{v}+x_{u v}
$$

and the line $l_{2}(a, b)$ joins the points $\rho, \sigma$ defined by

$$
\rho=x_{u}-b x, \quad \sigma=x_{v}-a x,
$$

where $a, b$ are functions of $u, v$. As the point $P_{x}$ varies over the surface $S$, the lines $l_{1}(a, b), l_{2}(a, b)$ generate two reciprocal congruences $\Gamma_{1}, \Gamma_{2}$, respectively.

The two reciprocal lines $l_{1}(a, b), l_{2}(a, b)$ are canonical lines $l_{1}(k)$, $l_{2}(k)$ of the first and second kind respectively in case

$$
a=-k \psi, \quad b=-k \phi,
$$

[^0]
[^0]:    Received by the editors February 2, 1945.
    ${ }^{1}$ E. P. Lane, Projective differential geometry of curves and surfaces, Chicago, 1932, p. 69.
    ${ }^{2}$ E. P. Lane, loc. cit., pp. 82-85.

