A NOTE ON HYPERGEODESICS AND CANONICAL LINES

M. L. MACQUEEN

In this note we introduce two families of hypergeodesics on a nonruled surface in ordinary projective space. Consideration of the properties of these hypergeodesics leads to certain geometrical constructions which yield canonical lines of the first kind from a given canonical line of the second kind.

We shall assume that the differential equations of a non-ruled surface S are written in the Fubini canonical form¹

(1)
$$x_{uu} = px + \theta_u x_u + \beta x_v, \quad x_{vv} = qx + \gamma x_u + \theta_v x_v \quad (\theta = \log \beta \gamma).$$

We select an ordinary point P_x of the surface S as one vertex of the usual local tetrahedron of reference. When a curve C_{λ} through the point P_x is regarded as being imbedded in the one-parameter family of curves represented on S by the equation

(2)
$$dv - \lambda(u, v)du = 0,$$

the osculating plane at the point P_x of the curve C_{λ} has the local equation

(3)
$$2\lambda(\lambda x_2 - x_3) + (\lambda' + \beta - \theta_u \lambda + \theta_v \lambda^2 - \gamma \lambda^3) x_4 = 0,$$

in which we have placed $\lambda' = \lambda_u + \lambda \lambda_v$.

It will be recalled that two lines $l_1(a, b)$, $l_2(a, b)$ are reciprocal lines² at a point P_x of a surface if the line $l_1(a, b)$ joins the point P_x and the point y defined by placing

$$y = -ax_u - bx_v + x_{uv}$$

and the line $l_2(a, b)$ joins the points ρ , σ defined by

$$\rho = x_u - bx, \qquad \sigma = x_v - ax,$$

where a, b are functions of u, v. As the point P_x varies over the surface S, the lines $l_1(a, b)$, $l_2(a, b)$ generate two reciprocal congruences Γ_1 , Γ_2 , respectively.

The two reciprocal lines $l_1(a, b)$, $l_2(a, b)$ are canonical lines $l_1(k)$, $l_2(k)$ of the first and second kind respectively in case

 $a = -k\psi, \qquad b = -k\phi,$

Received by the editors February 2, 1945.

¹ E. P. Lane, Projective differential geometry of curves and surfaces, Chicago, 1932, p. 69.

² E. P. Lane, loc. cit., pp. 82-85.