A NOTE ON THE REPLICAS OF NILPOTENT MATRICES

HSIO-FU TUAN

In a recent paper,1 Chevalley proved the following theorem:

(A) If Z is a nilpotent matrix over a field K of characteristic 0, the only replicas Z' of Z are the matrices Z' = tZ, $t \in K$.

For the proof of (A), he made use of a particular case of a theorem due to Ado and gave a proof for the results which he needed. In the present note, we shall give a direct simple proof of (A) and we shall in fact deduce it as an immediate consequence of the stronger theorem:

(B) If Z and Z' are two nilpotent matrices over a field K of characteristic 0, and if q(x) and r(x) are two polynomials with coefficients in K and without constant terms such that Z'=q(Z) and $Z'_{0,2}=r(Z_{0,2})$, then Z'=tZ, $t\in K$.

We shall later establish corresponding results for fields K of prime characteristics, to be stated as theorems (C) and (D).

That (A) is implied by (B) follows immediately from the fact that if Z' is a replica of Z, then $Z'_{r,s} = p_{r,s}(Z_{r,s})$, where $p_{r,s}(x)$ are polynomials in K without constant terms.³

For the proof of (B), let n be the degree of Z and Z' and let m be the least nonnegative integer such that $Z^{m+1}=0$. Clearly $0 \le m \le n-1$. The case Z=0 is trivial; we can therefore assume $1 \le m \le n-1$. Let also l be the least nonnegative integer such that $(Z_{0,2})^{l+1}=0$. Clearly $Z_{0,2}$ is nilpotent and $1 \le l \le n^2-1$. We shall see that $m \le l \le 2m$.

The matrix Z can be transformed by an (n, n) matrix T with coefficients in the algebraic closure \overline{K} of K into the following form:

(1)
$$Z_1 = T^{-1}ZT = \begin{pmatrix} 0 & & & \\ z_1 & 0 & & & \\ & \cdot & \cdot & & \\ & & \cdot & \cdot & \\ & & \cdot & 0 & \\ & & z_{n-1} & 0 \end{pmatrix},$$

where z_1, \dots, z_{n-1} are zeros and ones and not all zeros. Then for

Received by the editors July 17, 1944.

¹ Claude Chevalley, On a kind of new relationship between matrices, Amer. J. Math. vol. 65 (1943) pp. 521-531.

² Theorem 6, p. 530, loc. cit.

³ Lemma 4, p. 529, loc. cit.