EXTENSION OF A THEOREM OF BOCHNER ON EXPRESSING FUNCTIONALS AS RIEMANN INTEGRALS

BROCKWAY McMILLAN AND PACO LAGERSTROM

Introduction. S. Bochner ${ }^{1}$ has shown that an additive homogeneous functional defined over a sufficiently large class C of functions can be realized as a Riemann integral with respect to a finitely additive measure V in the space X over which the functions are defined. His proof makes use of the fact that the constant function belongs to C, as a result, $V(X)$ is finite. It is the purpose of this note to show that a similar theorem holds even when $V(X)$ turns out to be infinite. A modification of Bochner's proof would suffice for this stronger theorem. We have chosen rather to treat it as a problem of extending the domain of definition of the given functional.

Throughout we have used the symbol \rightarrow to be read as "implies." The equality \equiv is used to denote an equality which holds by definition.

Notations. We consider a space X of points x, and real-valued point functions f, g, • over X. Given f, g, and real numbers a, b, we shall write

$$
|f|, a f+b g, f g, f \wedge g, f \vee g, f^{+}, f^{-}
$$

respectively, for those functions whose values for each x are given by

$$
\begin{aligned}
& |f(x)|, \quad a f(x)+b g(x), \quad f(x) g(x), \quad \inf [f(x), g(x)], \\
& \sup [f(x), g(x)], \quad \sup [f(x), 0], \quad \sup [-f(x), 0] .
\end{aligned}
$$

We shall write a for the constant function $f(x)=a$, and write $f \geqq g$ if for each $x, f(x) \geqq g(x)$. The function which coincides with f on a set A and is equal to 0 in $X-A$ will be denoted by f_{A}. In particular we write 1_{A} for the characteristic function of the set A. The symbol \varnothing will denote the empty set.

It is clear that $f=f^{+}-f^{-}$, and that

$$
\left(f_{A}\right)^{+}=\left(f^{+}\right)_{A}, \quad\left(f_{A}\right)^{-}=\left(f^{-}\right)_{A}
$$

1. R-measure.
1.1. By an R-measure in X we shall mean a set function $V(E)$ defined for sets E of a family A with the following properties:
[^0]
[^0]: Received by the editors January 10, 1943, and, in revised form, September 5, 1944.
 ${ }^{1}$ S. Bochner, Additive set functions on groups, Ann. of Math. vol. 40 (1939) pp. 769-799. The theorem in question occurs in paragraph 4.

