SPANS IN LEBESGUE AND UNIFORM SPACES OF TRANSLATIONS OF STEP FUNCTIONS

RALPH PALMER AGNEW

1. Introduction. For each $p \ge 1$, let L_p be the Lebesgue space whose elements are real or complex valued measurable functions f(x), defined over $-\infty < x < \infty$, for which the integral

(1.1)
$$\int_{-\infty}^{\infty} |f(x)|^p dx$$

is finite. The distance $||f_2 - f_1||$ between two elements f_1 and f_2 of the space is defined by

(1.2)
$$||f_2 - f_1|| = \left\{ \int_{-\infty}^{\infty} |f_2(x) - f_1(x)|^p dx \right\}^{1/p}$$

For each $p \ge 1$, L_p is a linear metric complete separable space.

Let *E* be a set in L_p . The *linear manifold* M(E) determined by *E* is the set of all linear combinations (finite) of elements of *E*. The *span* $S_p(E)$ of *E* in L_p is the closure in L_p of M(E); an element ϕ of L_p belongs to $S_p(E)$ if and only if to each $\epsilon > 0$ corresponds an element f_{ϵ} of M(E) such that $||\phi - f_{\epsilon}|| < \epsilon$.

Let $f \in L_p$. For each real h, the translation f(x+h) of f(x) is also in L_p . Let T_f denote the set of translations of f. Wiener $[2, \text{ pp. } 7-9]^1$ showed that if $f \in L_2$, then $S_2(T_f)$ is the whole space L_2 if and only if the real zeros of the Fourier transform of f form a set of measure 0. He [2, pp. 9-19] showed also (and this was much more difficult) that if $f \in L_1$, then $S_1(T_f)$ is the whole space L_1 if and only if the Fourier transform of f has no real zeros. He [2, p. 93] raised the question whether similar propositions hold for other values of p and expressed a "suspicion" that they do, at least when $1 \leq p \leq 2$.

In view of the similar suspicions held by Wiener and others, a result recently announced by Segal [1] is surprising. Segal has shown that if 1 , then there is an element <math>f of L_p such that (i) the zeros of the Fourier transform of f form a set of measure 0 and (ii) the span $S_p(T_f)$ of the translations of f does not include the whole space L_p .

This development will doubtless create interest in the search for criteria for $S_p(T_f) = L_p$. With the hope that both the result and the

Presented to the Society, November 24, 1944; received by the editors September 25, 1944.

¹ Numbers in brackets refer to the Bibliography at the end of the paper.