SPANS IN LEBESGUE AND UNIFORM SPACES OF TRANSLATIONS OF STEP FUNCTIONS

RALPH PALMER AGNEW

1. Introduction. For each $p \geqq 1$, let L_{p} be the Lebesgue space whose elements are real or complex valued measurable functions $f(x)$, defined over $-\infty<x<\infty$, for which the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x)|^{p} d x \tag{1.1}
\end{equation*}
$$

is finite. The distance $\left\|f_{2}-f_{1}\right\|$ between two elements f_{1} and f_{2} of the space is defined by

$$
\begin{equation*}
\left\|f_{2}-f_{1}\right\|=\left\{\int_{-\infty}^{\infty}\left|f_{2}(x)-f_{1}(x)\right|^{p} d x\right\}^{1 / p} \tag{1.2}
\end{equation*}
$$

For each $p \geqq 1, L_{p}$ is a linear metric complete separable space.
Let E be a set in L_{p}. The linear manifold $M(E)$ determined by E is the set of all linear combinations (finite) of elements of E. The span $S_{p}(E)$ of E in L_{p} is the closure in L_{p} of $M(E)$; an element ϕ of L_{p} belongs to $S_{p}(E)$ if and only if to each $\epsilon>0$ corresponds an element f_{ϵ} of $M(E)$ such that $\left\|\phi-f_{\epsilon}\right\|<\epsilon$.

Let $f \in L_{p}$. For each real h, the translation $f(x+h)$ of $f(x)$ is also in L_{p}. Let T_{f} denote the set of translations of f. Wiener [2, pp. 7-9] ${ }^{1}$ showed that if $f \in L_{2}$, then $S_{2}\left(T_{f}\right)$ is the whole space L_{2} if and only if the real zeros of the Fourier transform of f form a set of measure 0. He [2, pp. 9-19] showed also (and this was much more difficult) that if $f \in L_{1}$, then $S_{1}\left(T_{f}\right)$ is the whole space L_{1} if and only if the Fourier transform of f has no real zeros. He [2, p. 93] raised the question whether similar propositions hold for other values of p and expressed a "suspicion" that they do, at least when $1 \leqq p \leqq 2$.

In view of the similar suspicions held by Wiener and others, a result recently announced by Segal [1] is surprising. Segal has shown that if $1<p<2$, then there is an element f of L_{p} such that (i) the zeros of the Fourier transform of f form a set of measure 0 and (ii) the span $S_{p}\left(T_{f}\right)$ of the translations of f does not include the whole space L_{p}.

This development will doubtless create interest in the search for criteria for $S_{p}\left(T_{f}\right)=L_{p}$. With the hope that both the result and the

[^0]
[^0]: Presented to the Society, November 24, 1944; received by the editors September 25, 1944.
 ${ }^{1}$ Numbers in brackets refer to the Bibliography at the end of the paper.

