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ALGEBRA AND THEORY OF NUMBERS 

1. H. W. Becker: The composite umbra theorem. 
Let U, V, W, • • • be different umbrae, and let [ ] confine a polynomial 

umbra. It is well known that [C/+F]na=(27-fF)w, based on the generator equation, 
eW+n*mjr-e7-[UV]«, needs analogous definition. e l T O - ^ - ( ^ - » ) a o ^ « * ( F ) , 
where (V)n is a Jordan factorial, and [Ue]n*=<l>n(U) is the exponential polynomial of 
E. T. Bell (Ann. of Math. vol. 35 (1934) p. 263). Then [UV]n- [Ue*(V)]n = 4>n(U*V), 
where * means that every term in U of weight m is multiplied by ( V)m. This is the 
composite umbra theorem. Such asymmetric composition is in general commutative, 
associative and distributive only for scalars, or for umbra iterates and inverses (calcu
lated from UU** U®\ UU^^^l, and so on). These decompositions greatly simplify, 
if Uo— £/i — l. Or they may be generalized, to an umbra form [/£/]n, where ƒ is any 
function of any number of umbrae. Where the U are scalars, [fU]n reduces to (fU)n

t 

conveniently verifying the theorem and its consequences. The extension to any num
ber of factors, [t/FFT • • • ], is in close parallelism with the iterated exponential 
integers of E. T. Bell (Ann. of Math. vol. 39 (1938) p. 539), the classic instance. 
(Received October 28, 1944.) 

2. H. W. Becker: The hyper-umbra theorem. 
An umbra U is the representative of a series Uo, • • • , Unt

 m • • • The umbra of 
an umbra, and so on, to m dimensions, or blanks, is called a hyper-umbra, and written 
mU—mU{, • • • , } . The fundamental umbra is e, of generator eet"l^ete. Its property 
(e) = l, where ( ) is a Jordan factorial, underlies the new operational transformation 
eE~eE* in the finite difference calculus. Application to an umbra yields eB*U{0\ 
=e U{ e]. The classic instance is Dombinski's theorem, in the form eE0r=£€r. The oper
ation may be iterated, along each dimension of a hyper-umbra. Denote by me a contin
ued exponential of the wth order. Then meBomU{0, • • • ,0} =™emU=en'mU{ei • • • , € } . 
This is the hyper-umbra theorem. Where mTJ=* Y is the cubic array whose typical cell 
is ( UZ+X)n, this gives 9eY=exp exp exp F—ee • eeU. Where m£/= Wis the square array 
of cells ÏJZn = (U+ • • • + U)n to ZZTs, eeW=*eeU. This is remarkable, in that the part 
is equipotent to the whole. If £7=1= the identity umbra, then W=ili"=the table of 
all integer powers. Thus the power matrix is equipotent to unity. The theorem gen
eralizes tomeTE*mU{0, • • • ,0}-memU,T**emT*{€T, • • • , eT], where * denotes scalar 
or subscript multiplication according as T is ordinary or umbral. (Received October 
28, 1944.) 
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