THE EQUATION $x^{\prime} \equiv x d-d x=b$

N. JACOBSON

Let \mathfrak{N} be an associative algebra with a possibly infinite basis over a field Φ. Then if d is a fixed element in \mathfrak{A}, it is well known that the mapping $x \rightarrow x^{\prime} \equiv[x, d]=x d-d x$ is a derivation ${ }^{1}$ in \mathfrak{A}; that is,

$$
(x+y)^{\prime}=x^{\prime}+y^{\prime}, \quad(x \alpha)^{\prime}=x^{\prime} \alpha, \quad(x y)^{\prime}=x^{\prime} y+x y^{\prime}
$$

for all x, y in \mathfrak{H} and all α in Φ. The constants relative to such a derivation are the elements of \mathfrak{A} that commute with d. We shall call an element b a d-integral if $b=a^{\prime}$ for some element a in \mathfrak{A}, that is, if the equation $x^{\prime}=x d-d x=b$ has a solution in \mathfrak{N}. Clearly if a is a solution of this equation then the totality of solutions is the set $\{a+c\}$ where c ranges over the set of d-constants. In a recent paper appearing in this Bulletin, R. E. Johnson obtained a necessary and sufficient condition that an element b be a d-integral under the assumption that \mathcal{A} is a separable algebraic division ring. ${ }^{2}$ In this note we allow \mathfrak{Q} to be an arbitrary algebra but we make the assumption that d is an algebraic element in the sense that it satisfies a polynomial equation with coefficients in Φ. We obtain a necessary condition, which is equivalent to Johnson's condition when \mathfrak{A} is a division ring, that b be a d-integral. If the minimum polynomial $\mu(\lambda)$ of d is relatively prime to its derivative $\mu^{\prime}(\lambda)$, then it is easy to see that the condition is also sufficient and one may give an explicit formula for a solution of the equation $x^{\prime}=b$. If we assume that \mathfrak{A} is a simple algebra satisfying the descending chain condition for left ideals then we can show that our condition is also sufficient when $\mu(\lambda)$ is a product of distinct irreducible factors in $\Phi[\lambda]$ and in certain other cases. Here, however, we do not display a solution but merely prove its existence. Our results include, of course, Johnson's result for algebraic division rings, since the minimum polynomial of an element in such a ring is irreducible. No assumption about separability is required.

In order to obtain a condition for the solvability of the equation $x^{\prime}=b$ we consider the matrices

$$
u=\left(\begin{array}{ll}
d & 0 \tag{1}\\
0 & d
\end{array}\right), \quad v=\left(\begin{array}{ll}
d & b \\
0 & d
\end{array}\right)
$$

[^0]
[^0]: Received by the editors May 19, 1944.
 ${ }^{1}$ Cf. the author's paper Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. vol. 42 (1937) pp. 206-224.
 ${ }^{2}$ On the equation $\chi \alpha=\gamma \chi+\beta$ over an algebraic division ring, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 202-208.

