THE EQUATION $x' \equiv xd - dx = b$

N. JACOBSON

Let \mathfrak{A} be an associative algebra with a possibly infinite basis over a field Φ . Then if d is a fixed element in \mathfrak{A} , it is well known that the mapping $x \rightarrow x' \equiv [x, d] = xd - dx$ is a derivation¹ in \mathfrak{A} ; that is,

$$(x + y)' = x' + y',$$
 $(x\alpha)' = x'\alpha,$ $(xy)' = x'y + xy'$

for all x, y in \mathfrak{A} and all α in Φ . The constants relative to such a derivation are the elements of \mathfrak{A} that commute with d. We shall call an element b a d-integral if b = a' for some element a in \mathfrak{A} , that is, if the equation x' = xd - dx = b has a solution in \mathfrak{A} . Clearly if a is a solution of this equation then the totality of solutions is the set $\{a+c\}$ where c ranges over the set of d-constants. In a recent paper appearing in this Bulletin, R. E. Johnson obtained a necessary and sufficient condition that an element b be a d-integral under the assumption that \mathfrak{A} is a separable algebraic division ring.² In this note we allow \mathfrak{A} to be an arbitrary algebra but we make the assumption that d is an algebraic element in the sense that it satisfies a polynomial equation with coefficients in Φ . We obtain a necessary condition, which is equivalent to Johnson's condition when \mathfrak{A} is a division ring, that b be a *d*-integral. If the minimum polynomial $\mu(\lambda)$ of *d* is relatively prime to its derivative $\mu'(\lambda)$, then it is easy to see that the condition is also sufficient and one may give an explicit formula for a solution of the equation x' = b. If we assume that \mathfrak{A} is a simple algebra satisfying the descending chain condition for left ideals then we can show that our condition is also sufficient when $\mu(\lambda)$ is a product of distinct irreducible factors in $\Phi[\lambda]$ and in certain other cases. Here, however, we do not display a solution but merely prove its existence. Our results include, of course, Johnson's result for algebraic division rings, since the minimum polynomial of an element in such a ring is irreducible. No assumption about separability is required.

In order to obtain a condition for the solvability of the equation x'=b we consider the matrices

(1)
$$u = \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}, \quad v = \begin{pmatrix} d & b \\ 0 & d \end{pmatrix}$$

Received by the editors May 19, 1944.

¹ Cf. the author's paper Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. vol. 42 (1937) pp. 206-224.

² On the equation $\chi \alpha = \gamma \chi + \beta$ over an algebraic division ring, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 202–208.