CONGRUENCES INVOLVING THE PARTITION FUNCTION $p(n)$

WILLIAM H. SIMONS

1. Introduction. The purpose of this note is to give certain congruence properties of $p(n)$, the partition function, for moduli 13 and 17, analogous to those obtained by Ramanujan for moduli 5, 7 and 11. The method and notation employed are essentially those of Ramanujan in [1]. ${ }^{1}$ Let

$$
\begin{aligned}
& P=P(x)=1-24 \sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}} \\
& Q=Q(x)=1+240 \sum_{n=1}^{\infty} \frac{n^{3} x^{n}}{1-x^{n}} \\
& R=R(x)=1-504 \sum_{n=1}^{\infty} \frac{n^{5} x^{n}}{1-x^{n}}, \\
& f(x)=\prod_{i=1}^{\infty}\left(1-x^{i}\right)
\end{aligned}
$$

Then it is known that

$$
f(z)=1-x-x^{2}+x^{5}+x^{7}-\cdots
$$

$$
\begin{equation*}
=\sum_{n=-\infty}^{+\infty}(-1)^{n} x^{n(3 n-1) / 2}, \tag{1}
\end{equation*}
$$

Furthermore, let $\Phi_{r, s}(x)=\sum_{n=1}^{\infty} n^{r} \sigma_{s-r}(n) x^{n}$, where $\sigma_{k}(n)$ denotes the sum of the k th powers of the divisors of n. In particular

$$
\Phi_{0, s}(x)=\sum_{n=1}^{\infty} \frac{n^{s} x^{n}}{1-x^{n}}=\sum_{n=1}^{\infty} \sigma_{s}(n) x^{n}
$$

so that

$$
\begin{aligned}
& P=1-24 \Phi_{0,1}(x), \\
& Q=1+240 \Phi_{0,3}(x), \\
& R=1-504 \Phi_{0,5}(x) .
\end{aligned}
$$

Then in terms of the functions $\sum_{r, 8}(n)$, defined by

$$
\sum_{r, s}(n)=\sum_{m=0}^{n} \sigma_{r}(m) \sigma_{s}(n-m)
$$

Received by the editors March 3, 1944.
${ }^{1}$ Numbers in brackets refer to the Bibliography at the end of the paper.

