For by Proposition 4, $F A=A$ for every $A$ and $A\left(A^{-1} F\right)=E F=F$.
Let $S_{1}, \cdots, S_{n}$ be $n$ statements. Let $A_{i}$ be the statement: "All the preceding statements are annulled but $S_{i}$ is true." It is interesting to note that the statements $A_{i}$ form an idempotent $(l, r)$ system.

Ohio State University

## A CON JECTURE IN ELEMENTARY NUMBER THEORY

## LEON ALAOGLU AND PAUL ERDÖS

A well known conjecture of Catalan states that if $f(n)$ is the sum of all divisors of $n$ except $n$, then the sequence of iterates of $f(n)$ is either eventually periodic or ends at 1 . It not only seems impossible to prove this, but it is also very difficult to verify. ${ }^{1}$

Another conjecture of Poulet, ${ }^{2}$ which appears equally difficult to prove, has the doubtful merit that it is easy to verify. Let $\sigma(n)$ be the sum of all divisors of $n$, and let $\phi(n)$ be Euler's function. Then for any integer $n$ the sequence

$$
f_{0}(n)=n, \quad f_{2 k+1}(n)=\sigma\left(f_{2 k}(n)\right), \quad f_{2 k}(n)=\phi\left(f_{2 k-1}(n)\right)
$$

is eventually periodic.
We have verified this conjecture to $n=10000$ (extending Poulet's verification) by using Glaisher's tables. ${ }^{3}$ The checking was facilitated by the following observation: if the conjecture is to be checked for all $n<x$, it is enough to find a member of the sequence other than the first which is less than $x$.

The longest cycle found was in the sequence $f_{k}(9216)$. It starts with $f_{6}(9216)$, and is: $34560,122640,27648,81800,30976,67963,54432$, 183456, 48384, 163520, 55296, 163800, 34560 . However our method of checking does not show that this is the largest cycle up to 10000, and in fact Poulet found that $f_{k}(1800)$ has the same length 12.

As a rule $\phi(\sigma(n))$ is less than $n$. In fact, it can be shown that for every $\epsilon>0, \phi(\sigma(n))<\epsilon n$, except for a set of density 0 . The proof follows from the following two observations:

[^0]
[^0]:    Received by the editors May 18, 1944.
    ${ }^{1}$ L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Math. vol. 44 (1913) pp. 264-296, and P. Poulet, La Chasse aux Nombres, vol. 1, pp. 68-72, and vol. 2, p. 188.
    ${ }^{2}$ P. Poulet, Nouvelles suites arithmetiques, Sphinx vol. 2 (1932) pp. 53-54.
    ${ }^{3}$ J. W. L. Glaisher, Number-divisor tables, British Association for the Advancement of Science, Mathematical Tables, vol. 8.

