A GENERALIZATION OF CONTINUED FRACTIONS ${ }^{1}$

B. H. BISSINGER

1. Introduction. ${ }^{2}$ The generalizations and analogues of regular continued fractions due to Pierce [8], Lehmer [5], and Leighton [6] concern the iteration of rational functions to obtain rational approximations to a real number. The present generalization proceeds from the fact that the continued fraction

$$
\begin{equation*}
\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}} \tag{1.1}
\end{equation*}
$$

can be written in the form

$$
\begin{equation*}
f\left(a_{1}+f\left(a_{2}+\cdots\right.\right. \tag{1.2}
\end{equation*}
$$

where $f(t)=1 / t$. This suggests the possibility of using functions other than $1 / t$ to obtain generalizations of (1.1). In $\S 2$ a class F of functions which includes $1 / t$ is defined and in $\S 3$ meaning is given to (1.2) for each $f \in F$ and each sequence $a_{1}, a_{2}, a_{3}, \cdots$ of positive integers. An algorithm is given for obtaining for a fixed $f \in F$ an expression of the form (1.2) corresponding to each number x in the interval $0<x<1$; this expression is then called the f-expansion of x. The analogue of the nth convergent of a simple continued fraction is defined, and its behavior with respect to x is noted. In $\S 4$ the form (1.2) is called an f-expansion when $f \in F$ and $a_{1}, a_{2}, a_{3}, \cdots$ is a sequence of positive integers. The convergence and some idea of the rapidity of convergence of an f-expansion are established. The one-to-one correspondence between f-expansions and f-expansions of numbers $x, 0<x<1$, is given in $\S 5$ by Theorem 5. In $\S 6$ statistical independence of the a_{i} of an f-expansion is defined in the customary way and a subclass F_{p} of F for which the a_{i} are statistically independent is considered. Various sets of numbers x whose f-expansions are restricted by conditions on the a_{i} are considered and the linear Lebesgue measures of these sets are given. In $\S 7$, when $f \in F_{p}$, certain sets of numbers x which have been studied for $f(t)=1 / t$ by Borel [2] and F. Bernstein [1] are shown to be of measure zero.

[^0]
[^0]: Presented to the Society, September 12, 1943; received by the editors May 15, 1944.
 ${ }^{1}$ The author wishes to thank Professors Agnew and Kac for their help in the preparation of this paper.
 ${ }_{2}$ Numbers in brackets refer to the bibliography.

