x-axis at the time t=0. Let F(x,t) denote the resulting temperature distribution at the time t>0 according to the equation $4\partial F/\partial t = \partial^2 F/\partial x^2$. For a fixed t, say t=1/2, F(x,t) depending linearly on the parameters $\{f_n\}$ is now used as a family of interpolating functions. Indeed, for a given sequence of equidistant ordinates $\{y_n\}$ $(-\infty < n < \infty)$, the interpolation problem $F(n,t) = y_n \ (-\infty < n < \infty)$ admits the following explicit solution: (1) $F(x,t) = \sum_{n=-\infty}^{\infty} y_n N(x-n,t)$. Here $N(x,t) = (1/2\pi) \cdot \int_{-\infty}^{\infty} \{\psi(u)/\phi(u)\}\cos ux \ du$ where $\psi(u) = (\sin 2^{-1}u/2^{-1}u)^2 \exp\{-t(2^{-1}u)^2\}, \phi(u) = \sum_{k=-\infty}^{\infty} \psi(u+2\pi k)$. For t=0, $N(x,0)=1-|x|\ (-1\le x\le 1)$, $N(x,0)=0\ (x>1$ or x<-1), and (1) reduces to the linear interpolation of the ordinates $\{y_n\}$. For $t\to\infty$, $N(x,\infty)=\sin \pi x/\pi x$ and (1) reduces to the cardinal interpolation series (2) $F(x,\infty)=\sum_{n} y_n \{\sin \pi(x-n)/\pi(x-n)\}$. For a fixed finite t, such as t=1/2, formula (1) combines the smooth character of (2) $(t=\infty)$ with the computational advantages of linear interpolation (t=0). The computational advantage of a finite t arises from the exponential damping of N(x,t) as compared with the slow damping of $\sin \pi x/\pi x$. (Received October 2, 1944.)

279. I. J. Schoenberg: On smoothing and subtabulation of empirical functions by means of heat-flow. II.

Given a sequence of ordinates to be smoothed and subtabulated; the parameters $\{f_n\}$ of the interpolating function F(x,t) of the previous paper are now determined so as to minimize $S = \sum_{n=-\infty}^{\infty} \{F(n,t) - y_n\}^2 + \epsilon \sum_{n=-\infty}^{\infty} (f_n - y_n)^2$, where ϵ is a positive smoothing parameter. For $\epsilon = 0$ the previous interpolation problem results. For $\epsilon = \infty$, $f_n = y_n$ and F(x,t) is the smoothed version by heat-flow of the polygonal line F(x,0) of vertices (n,y_n) . A compromise between strict interpolation $(\epsilon = 0)$ and pure smoothing $(\epsilon = \infty)$ gives the explicit solution (1) $F(x,t,\epsilon) = \sum_{n=-\infty}^{\infty} y_n N(x-n,t,\epsilon)$, where $N(x,t,\epsilon) = (2\pi)^{-1} \int_{-\infty}^{\infty} \{(\epsilon + \phi(u))/(\epsilon + \phi^2(u))\} \psi(u)$ cos ux du. Clearly N(x,t,0) is identical with N(x,t) of the previous paper. Eight-place tables have just been computed on punched card machines for the function $N(x,t,\epsilon)$ and its derivatives $N_x'(x,t,\epsilon)$, $N_x''(x,t,\epsilon)$ for t=1/2, $\epsilon=0$, 0.1, 0.2, \cdots , 0.9, 1.0 and the range $-18.5 \le x \le 18.5$ (step 0.1) outside of which these functions vanish to 8 places. On increasing the smoothing parameter ϵ , the approximation (1) becomes smoother in the following sense: If $\sum y_n < \infty$ all integrals $\int_{-\infty}^{\infty} \{F^{(k)}(x,t,\epsilon)\}^2 dx$ $(k=0,1,2,\cdots)$ exist and each is a monotone decreasing function of ϵ in the range $0 \le \epsilon < \infty$. This procedure is being applied to certain empirical functions for which very smooth tables are required. (Received October 2, 1944.)

280. Alexander Weinstein and J. R. Pounder: On two elementary problems of mechanics and electromagnetic theory.

It is shown that the problem of the motion of a heavy particle on a rotating earth and the problem of the motion of a point charge in uniform electric and magnetic fields are mathematically equivalent, except for a change of axes; whereas they are usually treated by different methods. (Received September 29, 1944.)

GEOMETRY

281. J. E. Wilkins: A special class of surfaces in projective differential geometry. II.

In this paper, which is a sequel to one appearing under the same title (Duke Math. J. vol. 10 (1943) pp. 667-675), a more intensive study is made of surfaces in