THE ROLE OF INTERNAL FAMILIES IN MEASURE THEORY

ANTHONY P. MORSE

1. Introduction. Theorem 4.7 below is an abstract formulation of a certain closed subset theorem¹ recently established by Randolph and myself. It has a wider range of application than similar abstractions due to Hahn² and to Saks.³

2. Notation and terminology. When H is a family of sets we agree that

$$\sigma(H) = \sum_{eta \in H} eta, \qquad \pi(H) = \prod_{eta \in H} eta.$$

A family R is said to be: finitely additive if $\sigma(H) \in \mathbb{R}$ whenever H is a finite nonvacuous subfamily of R; countably additive if $\sigma(H) \in \mathbb{R}$ whenever H is a countable nonvacuous subfamily of R; finitely multiplicative if $\pi(H) \in \mathbb{R}$ whenever H is a finite nonvacuous subfamily of R; countably multiplicative if $\pi(F) \in \mathbb{R}$ whenever F is a countable nonvacuous subfamily of R; α complemental if R is such a family of subsets of α that $\alpha - \beta \in \mathbb{R}$ whenever $\beta \in \mathbb{R}$.

If R is a family of sets we also agree that: R_{σ} is the family of all sets of the form $\sigma(H)$ where H is a countable nonvacuous subfamily of R; R_{δ} is the family of all sets of the form $\pi(H)$ where H is a countable nonvacuous subfamily of R; R_{γ} is the family of all sets of the form $\sigma(R) - \beta$ where $\beta \in R$; R^{γ} is the smallest $\sigma(R)$ complemental, countably additive family which contains R; R^{δ} is the smallest countably multiplicative, countably additive family which contains R.

DEFINITION 2.1. R is *internal* if and only if R_{i} is finitely additive and $R_{\gamma} \subset R^{i}$.

REMARK 2.2 If R is the family of all closed subsets of a metric space then R is internal⁴ and the members of R^{γ} are the Borel subsets of the space.

Received by the editors November 15, 1943.

¹ A. P. Morse and J. F. Randolph, *The \phi rectifiable subsets of the plane*, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 236–305, Theorem 3.7 together with the remarks which follow Theorem 3.4.

² H. Hahn, Über die Multiplikation total-additiver Mengenfunktionen, Annali della R. Scuola Normale Superiore Pisa (2) vol. 2 (1933) p. 437.

^{*} S. Saks, Theory of the integral, Warsaw, 1937, p. 85.

⁴ Since an open set is an R_{σ} .