THE ROLE OF INTERNAL FAMILIES IN MEASURE THEORY

ANTHONY P. MORSE

1. Introduction. Theorem 4.7 below is an abstract formulation of a certain closed subset theorem ${ }^{1}$ recently established by Randolph and myself. It has a wider range of application than similar abstractions due to Hahn ${ }^{2}$ and to Saks. ${ }^{3}$
2. Notation and terminology. When H is a family of sets we agree that

$$
\sigma(H)=\sum_{\beta \in H} \beta, \quad \pi(H)=\prod_{\beta \in H} \beta .
$$

A family R is said to be: finitely additive if $\sigma(H) \in R$ whenever H is a finite nonvacuous subfamily of R; countably additive if $\sigma(H) \in R$ whenever H is a countable nonvacuous subfamily of R; finitely multiplicative if $\pi(H) \in R$ whenever H is a finite nonvacuous subfamily of R; countably multiplicative if $\pi(F) \in R$ whenever F is a countable nonvacuous subfamily of R; α complemental if R is such a family of subsets of α that $\alpha-\beta \in R$ whenever $\beta \in R$.

If R is a family of sets we also agree that: R_{σ} is the family of all sets of the form $\sigma(H)$ where H is a countable nonvacuous subfamily of $R ; R_{\delta}$ is the family of all sets of the form $\pi(H)$ where H is a countable nonvacuous subfamily of $R ; R_{\gamma}$ is the family of all sets of the form $\sigma(R)-\beta$ where $\beta \in R ; R^{\gamma}$ is the smallest $\sigma(R)$ complemental, countably additive family which contains $R ; R^{\delta}$ is the smallest countably multiplicative, countably additive family which contains R.

Definition 2.1. R is internal if and only if R_{δ} is finitely additive and $R_{\gamma} \subset R^{\delta}$.

Remark 2.2 If R is the family of all closed subsets of a metric space then R is internal ${ }^{4}$ and the members of R^{γ} are the Borel subsets of the space.

[^0]
[^0]: Received by the editors November 15, 1943.
 ${ }^{1}$ A. P. Morse and J. F. Randolph, The ϕ rectifiable subsets of the plane, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 236-305, Theorem 3.7 together with the remarks which follow Theorem 3.4.
 ${ }^{2}$ H. Hahn, Über die Multiplikation total-additiver Mengenfunktionen, Annali della R. Scuola Normale Superiore Pisa (2) vol. 2 (1933) p. 437.
 ${ }^{8}$ S. Saks, Theory of the integral, Warsaw, 1937, p. 85.
 ${ }^{4}$ Since an open set is an $R_{\text {r }}$.

