THE ROLE OF INTERNAL FAMILIES IN MEASURE THEORY
ANTHONY P. MORSE

1. Introduction. Theorem 4.7 below is an abstract formulation of
a certain closed subset theorem! recently established by Randolph
and myself. It has a wider range of application than similar abstrac-
tions due to Hahn? and to Saks.?

2. Notation and terminology. When H is a family of sets we agree
that
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A family R is said to be: finitely additive if o(H) ER whenever H
is a finite nonvacuous subfamily of R; countably additive if o(H)ER
whenever H is a countable nonvacuous subfamily of R; finitely multi-
plicative if m(H)ER whenever H is a finite nonvacuous subfamily
of R; countably multiplicative if w(F) ER whenever F is a countable
nonvacuous subfamily of R; a complemental if R is such a family of
subsets of o that « —BE R whenever B&ER.

If R is a family of sets we also agree that: R, is the family of all
sets of the form o¢(H) where H is a countable nonvacuous subfamily
of R; R; is the family of all sets of the form w(H) where H is a count-
able nonvacuous subfamily of R; R, is the family of all sets of the
form ¢(R) —B where BER; R” is the smallest ¢(R) complemental,
countably additive family which contains R; R? is the smallest count-
ably multiplicative, countably additive family which contains R.

DEFINITION 2.1. R is internal if and only if R; is finitely additive
and R,CR®.

REMARK 2.2 If R is the family of all closed subsets of a metric
space then R is internal* and the members of R are the Borel subsets
of the space.
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