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1. Introduction. A potential flow can be described as a vector dis
tribution q(r) (<jr = velocity vector, f = position vector) subject to the 
two conditions 

(1) div £ = 0, curl £ = 0. 

Instead of (1) one can also ask that a scalar function 0(f) exist so that 

(2) q = grad 0, A0 = 0. 

If both q and f are restricted to two dimensions, a third form of rep
resentation is possible. One can combine the components x, y of f and 
u, v of q to two complex numbers 

(3) x + iy = f, u — iv = v 

and then state that v is an analytic function of f. In this case, the 
Cauchy formula holds, 

(4) ƒƒ(*>, r )# = o, 

if ƒ is an analytic function of v and f and the integral is extended over 
the complete boundary of a region in which ƒ is regular. 

In the dynamics of the two-dimensional potential flow several equa
tions of the form (4) play a decisive role. It must be expected that the 
analogous theorems are valid in three-dimensional potential flow also. 
But the question has not yet been answered: For what vector f unctions 
f of q and f is the equation 

(s) J7ö,o-<ö-o 
correct if the integral is extended over the complete boundary of a region 
in which ƒ has continuous derivatives of the first order with respect to 
the six components x, y, z of f and u, v, w of qi Here, obviously, dS is 
the vectorial area element whose direction is that of the outward nor
mal, and the dot means scalar multiplication. The surface may consist 
of a finite number of analytic pieces. 
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