SUMMABILITY OF SUBSEQUENCES

RALPH PALMER AGNEW

1. Introduction. Let $a_{n k}(n, k=1,2, \cdots)$ be a matrix of real or complex constants for which

$$
\begin{align*}
& \lim _{n \rightarrow \infty} a_{n k}=0, \tag{1.1}\\
& k=1,2,3, \cdots, \\
& \lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k}=1 ; \tag{1.2}\\
& \sum_{k=1}^{\infty}\left|a_{n k}\right|<M, \\
& n=1,2,3, \cdots,
\end{align*}
$$

M being a constant. This matrix defines a regular method of summability by means of which a sequence x_{n} of real or complex numbers is summable to X if $X_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k}, n=1,2,3, \cdots$, exists and $\lim X_{n}=X$. It has recently been shown by R. C. Buck ${ }^{1}$ that if the sequence x_{n} is real, bounded, and divergent, then the sequence has a subsequence not summable A. This note proves the following more general theorem.

Theorem. Let A be regular and let x_{n} be a bounded complex sequence. Then there exists a subsequence y_{n} of x_{n} such that the set L_{Y} of limit points of the transform Y_{n} of y_{n} includes the set L_{x} of limit points of the sequence x_{n}.

If x_{n} is a bounded divergent sequence, then L_{x} and hence also L_{Y} must contain at least two distinct points and accordingly the subsequence y_{n} is not summable A. Applying the theorem to the divergent sequence $0,1,0,1, \cdots$, we obtain the result of Steinhaus ${ }^{2}$ that there is a sequence of 0 's and 1 's not summable A.
2. Proof of the theorem. Let L_{x} be the set of limit points of the bounded complex sequence x_{n}. Since the complex plane is separable and L_{x} is a closed set, there is a countable (finite or infinite) subset E of L_{x} such that the closure \bar{E} of E is the set L_{x} itself. Let $u_{1}, u_{2}, u_{3}, \cdots$ be a sequence containing all of the points of E; in case E is a finite set, the points $u_{1}, u_{2}, u_{3}, \cdots$ are not distinct. Let the elements of the sequence

$$
\begin{equation*}
u_{1} ; u_{1}, u_{2} ; u_{1}, u_{2}, u_{3} ; \cdots ; u_{1}, u_{2}, \cdots, u_{n} ; \cdots \tag{2.1}
\end{equation*}
$$

[^0]
[^0]: Presented to the Society, April 28, 1944; received by the editors February 5, 1944.
 ${ }^{1}$ R. C. Buck, A note on subsequences, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 898-899.
 ${ }^{2} \mathrm{H}$. Steinhaus, Some remarks on the generalization of limit (in Polish), Prace Matematyczno-fizyczne vol. 22 (1911) pp. 121-134.

