SUMMABILITY OF SUBSEQUENCES

RALPH PALMER AGNEW

1. Introduction. Let a_{nk} $(n, k=1, 2, \cdots)$ be a matrix of real or complex constants for which

(1.1)
$$\lim_{n \to \infty} a_{nk} = 0, \qquad k = 1, 2, 3, \cdots,$$

(1.2)
$$\lim_{n\to\infty} \sum_{k=1}^{\infty} a_{nk} = 1;$$
 $\sum_{k=1}^{\infty} |a_{nk}| < M,$ $n = 1, 2, 3, \cdots,$

M being a constant. This matrix defines a regular method of summability by means of which a sequence x_n of real or complex numbers is summable to X if $X_n = \sum_{k=1}^{\infty} a_{nk}x_k$, $n = 1, 2, 3, \cdots$, exists and $\lim X_n = X$. It has recently been shown by R. C. Buck¹ that if the sequence x_n is real, bounded, and divergent, then the sequence has a subsequence not summable A. This note proves the following more general theorem.

THEOREM. Let A be regular and let x_n be a bounded complex sequence. Then there exists a subsequence y_n of x_n such that the set L_Y of limit points of the transform Y_n of y_n includes the set L_x of limit points of the sequence x_n .

If x_n is a bounded divergent sequence, then L_x and hence also L_Y must contain at least two distinct points and accordingly the subsequence y_n is not summable A. Applying the theorem to the divergent sequence 0, 1, 0, 1, \cdots , we obtain the result of Steinhaus² that there is a sequence of 0's and 1's not summable A.

2. **Proof of the theorem.** Let L_x be the set of limit points of the bounded complex sequence x_n . Since the complex plane is separable and L_x is a closed set, there is a countable (finite or infinite) subset E of L_x such that the closure \overline{E} of E is the set L_x itself. Let u_1, u_2, u_3, \cdots be a sequence containing all of the points of E; in case E is a finite set, the points u_1, u_2, u_3, \cdots are not distinct. Let the elements of the sequence

 $(2.1) u_1; u_1, u_2; u_1, u_2, u_3; \cdots; u_1, u_2, \cdots, u_n; \cdots$

Presented to the Society, April 28, 1944; received by the editors February 5, 1944. ¹ R. C. Buck, *A note on subsequences*, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 898-899.

² H. Steinhaus, Some remarks on the generalization of limit (in Polish), Prace Matematyczno-fizyczne vol. 22 (1911) pp. 121-134.