ON A THEOREM OF BOHR AND PẢL

R. SALEM

Let D be the domain bounded by a simple closed plane Jordan curve of equations $x=f(t), y=g(t)$, where f and g are continuous and of period 2π. Fejér [1] ${ }^{1}$ has proved that the power series representing the function mapping conformally the interior of the unit circle $|z|<1$ into D converges uniformly on the circle $|z|=1$; hence that there exists a continuous strictly increasing function $t(\theta)(t(0)=0, t(2 \pi)=2 \pi)$ such that the Fourier series of $F(\theta)=f(t(\theta))$ and of $G(\theta)=g(t(\theta))$ converge uniformly for $0 \leqq \theta \leqq 2 \pi$. Using this theorem, J. Pál [2] has proved that given any continuous function $\phi(t)$ of period 2π there exists a function $t(\theta)$ of the above described type such that the Fourier series of $\phi(t(\theta))$ converges everywhere, and uniformly in the interval $\delta \leqq \theta \leqq 2 \pi-\delta$, for any positive δ. H. Bohr [3] has removed the restriction on the uniform convergence in Pál's theorem by proving that the function $t(\theta)$ can be chosen such that the Fourier series of $\phi(t(\theta))$ converges uniformly for $0 \leqq \theta \leqq 2 \pi$. Bohr's argument involves some delicate considerations. The purpose of this paper is to give a short and simple proof of Bohr's result.

Let $\phi(t)$ be continuous, and of period 2π. Without loss of generality we can, by adding to ϕ a suitable constant, assume that $\int_{0}^{2 \pi} \phi(t) d t=0$. Then there are values of t for which $\phi(t)$ vanishes and we can assume that $t \equiv 0(\bmod 2 \pi)$ is one of these values. Thus $\phi(0)=\phi(2 \pi)=0$. The mean value of the function being zero, there exists at least another point $a(0<a<2 \pi)$ such that $\phi(a)=0$.

Suppose first that, in the open interval ($0,2 \pi$), a is the only point at which $\phi(t)$ vanishes. Then $\phi(t)$ is strictly positive in one of the open intervals ($0, a$), ($a, 2 \pi$), and strictly negative in the other one. Let $\alpha(t)$ be any function, continuous, of period 2π, such that $\alpha(0)=\alpha(2 \pi)$ $=0$ and such that $\alpha(t)$ is strictly increasing in ($0, a$) and strictly decreasing in ($a, 2 \pi$). Then the equations $x=\alpha(t), y=\phi(t)$ represent a simple closed Jordan curve and we have only to apply the theorem of Fejér quoted above to get our result for the function $\phi(t)$.

Suppose now that a is not the only point in the open interval $(0,2 \pi)$ at which $\phi(t)$ vanishes. Let M_{1} be the maximum of $|\phi(t)|$ for $0 \leqq t \leqq a$ and let t_{1} be a point $\left(0<t_{1}<a\right)$ such that $\left|\phi\left(t_{1}\right)\right|=M_{1}$. In the same way let M_{2} be the maximum of $|\phi(t)|$ in $a \leqq t \leqq 2 \pi$ and let t_{2} be

[^0]
[^0]: Presented to the Society, February 26, 1944; received by the editors December 30, 1943.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

