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1. The method of integral operators. The solution of an equation 
and its associate. The method of integral operators in the theory of 
linear partial differential equations of the type1 

L(U) m (Uxx + Uyy)/4 + A(xiy)Ux/2 + B(x,y)Uy/2 + C(x,y)U 

= Uzz + 2 Re [a(zy z)Uz] + c(z, z)U = 0, 

where 

z = x + iy, z = x - iy, U» = [(dU/dx) - i(dU/dy)]/2, 

Uz « [(dU/dx) + i{dU/dy)]/2y 

consists in associating with an arbitrary analytic function ƒ(£*) of a 
complex variable f, by means of an operator of the form 

(1.2) U(z,z)=M(f)^Re[P(f)], 

(1.3) «(*, z) = P(f) = ƒ E(«, z, t)f(z(l - t*)/2)dt/(l - fi)M, 

a solution U(z} z) of the equation (1.1). 
E= E(s, s, £)> M = I» is any analytic function of z and £ which satis

fies the equation 

(1.4) G(E) s (1 - 22)(E*< + aE«) - r^E* + aE) + 2s*L(E) = 0, 

is regular in a sufficiently large domain and has the property that 
(Eê+AE)/zt is continuous at 2 = 0, / = 0. 

REMARK. An operator (1.2) is determined by choosing a particular 
function E (the generating f unction of the operator) which satisfies the 
above requirements. 

Let U(z, z) be a function which satisfies the equation L(U) = 0 and 
which is an entire function of two complex variables x and y, that is, 
a solution of (1.1) whose series development 
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1 Since we consider the functions u(z, z) for real values of x and y, that is for z 
and z conjugate, it would be, of course, sufficient to write simple u(z). We shall, how
ever, use the first notation in order to stress the fact that u(z, z) is a (complex) analytic 
function of two real variables xt y, reserving u(z) for analytic functions of one complex 
variable. 
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