PROOF OF A CON JECTURE OF P. ERDÖS ON THE DERIVATIVE OF A POLYNOMIAL

PETER D. LAX

Introduction. We start out from the following consequence of S. Bernstein's well known theorem on trigonometric polynomials. Let $p_{n}(z)$ be a polynomial of degree n for which $\left|p_{n}(z)\right| \leqq 1$ holds as $|z| \leqq 1$; then $\left|p_{n}^{\prime}(z)\right| \leqq n$ as $|z| \leqq 1$ with $\left|p_{n}^{\prime}(z)\right|=n$ if and only if $p_{n}(z)=a z^{n},|a|=1$.

Some time ago P. Erdös conjectured that if $\left|p_{n}(z)\right| \leqq 1$ holds as $|z| \leqq 1$ and $p_{n}(z)$ has no roots inside the unit circle, then $\left|p_{n}^{\prime}(z)\right| \leqq n / 2$ as $|z| \leqq 1$. In the present note we give a proof of this conjecture.

Preliminaries. Let us introduce the following notation which shall be used throughout this paper:

$$
\begin{array}{ll}
p_{n}(z)=c \prod_{\nu=1}^{n}\left(z-z_{\nu}\right), & c \neq 0 ; \\
q_{n}(z)=\bar{c} \prod_{\nu=1}^{n}\left(1-z \bar{z}_{\nu}\right)=z^{n} \bar{p}_{n}\left(z^{-1}\right) .
\end{array}
$$

Then for $|z|=1$ we have $\left|p_{n}(z)\right|=\left|q_{n}(z)\right|$.
Lemma I. If $p_{n}(z)$ has no roots inside the unit circle, that is $\left|z_{v}\right| \geqq 1$, the polynomial $p_{n}(z)+\epsilon q_{n}(z),|\epsilon|=1$, will have all its roots on the unit circle. ${ }^{1}$

Lemma II. If $p_{n}(z)$ has no roots inside the unit circle, $\left|z_{\nu}\right| \geqq 1$, we have $\left|p_{n}^{\prime}(z)\right| \leqq\left|q_{n}^{\prime}(z)\right|$ as $|z|=1$.

Let $z \neq z_{\nu}$; using the abbreviation $z^{-1} z_{\nu}=A_{\nu}$ we find

$$
\begin{aligned}
& \left|p_{n}^{\prime}(z) / p_{n}(z)\right|=\left|\sum_{\nu=1}^{n}\left(z-z_{\nu}\right)^{-1}\right|=\left|\sum_{\nu=1}^{n}\left(1-A_{\nu}\right)^{-1}\right| \\
& \left|q_{n}^{\prime}(z) / q_{n}(z)\right|=\left|\sum_{\nu=1}^{n}\left(z-\bar{z}_{\nu}^{-1}\right)^{-1}\right|=\left|\sum_{\nu=1}^{n} A_{\nu}\left(1-A_{\nu}\right)^{-1}\right| .
\end{aligned}
$$

Since $\left|A_{\nu}\right| \geqq 1, A_{\nu} \neq 1$, we obtain

Received by the editors March 8, 1944.
${ }^{1}$ G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Berlin, 1925, vol. 1, p. 88, Problem 26.

