PROOF OF A CONJECTURE OF P. ERDÖS ON THE DERIVATIVE OF A POLYNOMIAL

PETER D. LAX

Introduction. We start out from the following consequence of S. Bernstein's well known theorem on trigonometric polynomials. Let $p_n(z)$ be a polynomial of degree *n* for which $|p_n(z)| \leq 1$ holds as $|z| \leq 1$; then $|p'_n(z)| \leq n$ as $|z| \leq 1$ with $|p'_n(z)| = n$ if and only if $p_n(z) = az^n$, |a| = 1.

Some time ago P. Erdös conjectured that if $|p_n(z)| \leq 1$ holds as $|z| \leq 1$ and $p_n(z)$ has no roots inside the unit circle, then $|p'_n(z)| \leq n/2$ as $|z| \leq 1$. In the present note we give a proof of this conjecture.

Preliminaries. Let us introduce the following notation which shall be used throughout this paper:

$$p_n(z) = c \prod_{\nu=1}^n (z - z_{\nu}), \qquad c \neq 0;$$

$$q_n(z) = \bar{c} \prod_{\nu=1}^n (1 - z\bar{z}_{\nu}) = z^n \bar{p}_n(z^{-1}).$$

Then for |z| = 1 we have $|p_n(z)| = |q_n(z)|$.

LEMMA I. If $p_n(z)$ has no roots inside the unit circle, that is $|z_r| \ge 1$, the polynomial $p_n(z) + \epsilon q_n(z)$, $|\epsilon| = 1$, will have all its roots on the unit circle.¹

LEMMA II. If $p_n(z)$ has no roots inside the unit circle, $|z_p| \ge 1$, we have $|p'_n(z)| \le |q'_n(z)|$ as |z| = 1.

Let $z \neq z_{\nu}$; using the abbreviation $z^{-1}z_{\nu} = A_{\nu}$ we find

$$\left| p_n'(z)/p_n(z) \right| = \left| \sum_{\nu=1}^n (z - z_{\nu})^{-1} \right| = \left| \sum_{\nu=1}^n (1 - A_{\nu})^{-1} \right|,$$

$$\left| q_n'(z)/q_n(z) \right| = \left| \sum_{\nu=1}^n (z - \bar{z}_{\nu}^{-1})^{-1} \right| = \left| \sum_{\nu=1}^n A_{\nu} (1 - A_{\nu})^{-1} \right|.$$

Since $|A_r| \ge 1$, $A_r \ne 1$, we obtain

Received by the editors March 8, 1944.

¹ G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Berlin, 1925, vol. 1, p. 88, Problem 26.