PROJECTIVE INVARIANTS OF INTERSECTION OF CERTAIN PAIRS OF SURFACES

CHUAN-CHIH HSIUNG

1. Introduction. In a recent paper [2] ${ }^{1}$ the author has shown the existence, together with metric and projective characterizations, ${ }^{2}$ of a unique projective invariant determined by the neighborhood of the second order of two surfaces S_{1}, S_{2} at an ordinary point O in ordinary space when the tangent planes τ_{1}, τ_{2} of the surfaces S_{1}, S_{2} at the point O are distinct and the line t of intersection of the two tangent planes τ_{1}, τ_{2} does not coincide with any one of the asymptotic tangents of the surfaces S_{1}, S_{2} at the point O. On the other hand, with regard to the coincidences of the line t and the asymptotic tangents of the surfaces S_{1}, S_{2} at the point O two essentially different cases can arise. The object of this note is to derive some projective invariants in these cases. Noticing that no projective invariant can be determined by the neighborhood of the second order of the surfaces S_{1}, S_{2} at the point O, we obtain all projective invariants determined by the neighborhood of the second order of one surface and that of the third order of the other at the point O.

I. Two surfaces with distinct tangent planes and distinct

 asymptotic tangents at an ordinary point2. Derivation of invariants. Let us first consider two surfaces S_{1}, S_{2} in ordinary space intersecting at an ordinary point O with distinct tangent planes τ_{1}, τ_{2}, whose line of intersection t is supposed to be an asymptotic tangent of the surface S_{1} at the point O. Let t_{1} be the other asymptotic tangent of the surface S_{1} at the point O, and t_{2} the harmonic conjugate line of t with respect to the asymptotic tangents of the surface S_{2} at the point O. If we choose the point O to be the origin, the lines t, t_{2}, t_{1} to be respectively the axes x, y, z of a general nonhomogeneous projective coordinate system, then the power series expansions of the surfaces S_{1}, S_{2} in the neighborhood of the point O may be written in the form

$$
\begin{align*}
& S_{1}: \quad y=l x z+p x^{3}+r x^{2} z+s x z^{2}+q z^{3}+\cdots, \tag{1}\\
& S_{2}: \quad z=m x^{2}+n y^{2}+\cdots \tag{2}
\end{align*}
$$

[^0]
[^0]: Received by the editors January 26, 1944.
 ${ }^{1}$ Numbers in square brackets refer to the references at the end of the paper.
 ${ }^{2}$ An extension of these results to two hypersurfaces has been made by Professor Su . See his paper [6].

