ON RIESZ SUMMABILITY OF FOURIER SERIES BY EXPONENTIAL MEANS

FU TRAING WANG

Let $f(t)$ be an integrable periodic function with the period 2π. Let its Fourier series be

$$
\begin{equation*}
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t \tag{1}
\end{equation*}
$$

and let

$$
\begin{aligned}
\phi(t) & =\{f(x+t)+f(x-t)-2 s\} / 2 \\
\phi_{\beta}(t) & =(1 / \Gamma(\beta)) \int_{0}^{t}(t-u)^{\beta-1} \phi(u) d u \\
A_{n} & =a_{n} \cos n x+b_{n} \sin n x
\end{aligned}
$$

We shall prove the following result. ${ }^{1}$

$$
\text { If } A_{n}>-K n^{-\beta / \gamma}(\gamma>\beta>0) \text { and }
$$

$$
\begin{equation*}
\phi_{\beta}(t)=o\left(t^{\gamma}\right) \tag{2}
\end{equation*}
$$

$$
\text { as } t \rightarrow 0
$$

the Fourier series (1) converges to s at $t=x$.
Set $\alpha=1-\beta / \gamma$, and

$$
\begin{equation*}
C_{\tau}(\omega)=a_{0} e^{\tau \omega^{\alpha}} / 2+\sum_{n<\omega}\left(e^{\omega^{\alpha}}-e^{n^{\alpha}}\right)^{\tau} A_{n} \tag{3}
\end{equation*}
$$

The Fourier series (1) is said to be summable ($e^{n^{\alpha}}, \tau$) to the sum s if 2

$$
C_{\tau}(\omega)=s e^{\tau \omega^{\alpha}}+o\left(e^{\tau \omega^{\alpha}}\right) \quad \text { as } \omega \rightarrow \infty
$$

Concerning this kind of summability we have the following theorem.

Theorem. ${ }^{3}$ If (2) holds and τ is a positive integer greater than $\gamma+1$ the Fourier series (1) is summable $\left(e^{n^{\alpha}}, \tau\right)$ to the sum s at $t=x$.

Received by the editors January 6, 1944.
${ }^{1}$ G. H. Hardy and J. E. Littlewood [2], F. T. Wang [6]. Numbers in brackets refer to the references listed at the end of the paper.
${ }^{2}$ G. H. Hardy and M. Riesz [3].
${ }^{8}$ Under the hypotheses of the Theorem I have established that the Fourier series (1) is summable $\left(e^{n \alpha}, \gamma+\delta\right)(\delta>0)$ to the sum s at $t=x$, but the proof is very complicated. See F. T. Wang [6].

