ON RIESZ SUMMABILITY OF FOURIER SERIES BY EXPONENTIAL MEANS

FU TRAING WANG

Let f(t) be an integrable periodic function with the period 2π . Let its Fourier series be

(1)
$$f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt$$

and let

$$\phi(t) = \{f(x+t) + f(x-t) - 2s\}/2,$$

$$\phi_{\beta}(t) = (1/\Gamma(\beta)) \int_{0}^{t} (t-u)^{\beta-1} \phi(u) du,$$

 $A_n = a_n \cos nx + b_n \sin nx.$

We shall prove the following result.¹

If
$$A_n > -Kn^{-\beta/\gamma}$$
 ($\gamma > \beta > 0$) and
(2) $\phi_{\beta}(t) = o(t^{\gamma})$ as $t \to 0$,

the Fourier series (1) converges to s at t=x.

Set $\alpha = 1 - \beta / \gamma$, and

(3)
$$C_{\tau}(\omega) = a_0 e^{\tau \omega^{\alpha}}/2 + \sum_{n < \omega} (e^{\omega^{\alpha}} - e^{n^{\alpha}})^{\tau} A_n$$

The Fourier series (1) is said to be summable $(e^{n^{\alpha}}, \tau)$ to the sum s if²

$$C_{\tau}(\omega) = s e^{\tau \omega^{\alpha}} + o(e^{\tau \omega^{\alpha}})$$
 as $\omega \to \infty$.

Concerning this kind of summability we have the following theorem.

THEOREM.³ If (2) holds and τ is a positive integer greater than $\gamma + 1$ the Fourier series (1) is summable $(e^{n^{\alpha}}, \tau)$ to the sum s at t = x.

Received by the editors January 6, 1944.

¹G. H. Hardy and J. E. Littlewood [2], F. T. Wang [6]. Numbers in brackets refer to the references listed at the end of the paper.

² G. H. Hardy and M. Riesz [3].

^s Under the hypotheses of the Theorem I have established that the Fourier series (1) is summable $(e^{n\alpha}, \gamma+\delta)(\delta>0)$ to the sum s at t=x, but the proof is very complicated. See F. T. Wang [6].