ON THE GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

J. ERNEST WILKINS, JR.

1. Introduction. In a recent paper by Boas, Boas and Levinson [1]¹ two sets of sufficient conditions were given for the existence of $\lim_{x\to\infty} y'(x)$ when y(x) satisfies the differential equation

(1:1)
$$y'' + A(x)y = B(x).$$

We propose in this paper to use their methods and to generalize their results to the *n*th order linear differential equation

(1:2)
$$y^{(n)} + \sum_{i=1}^{n} A_i(x) y^{(n-i)} = B(x),$$

and to obtain sufficient conditions for

$$\lim_{x \to \infty} y^{(n-1)}(x)$$

to exist. In case n=2, $A_1(x)=0$ and $A_2(x)=A(x)$, these conditions reduce to those in [1].

2. Statements of the theorems. In §4 we shall prove the following theorem.

THEOREM I. If $A_i(x)$ $(i=1, \dots, n)$ and B(x) are continuous on $0 \le x < \infty$, and if the integrals

(2:1)
$$\int_0^\infty x^{i-1} |A_i(x)| dx \qquad (i = 1, \dots, n),$$

exist, then the limit (1:3) exists for any solution y(x) of (1:2).

We now write each function $A_i(x)$ as the difference of two nonnegative functions, $A_i(x) = A_i'(x) - A_i''(x)$, where $A_i' = (|A_i| + A_i)/2$, $A_i'' = (|A_i| - A_i)/2$. Then in §5, \cdots , §8 we shall prove the following theorem.

THEOREM II. If $A_i(x)$ $(i=1, \dots, n)$ and B(x) are continuous on $0 \le x < \infty$, if the integrals

Received by the editors October 30, 1943.

¹ Numbers in brackets refer to the Bibliography at the end of the paper.