MATRIX PRODUCTS OF MATRIX POWERS

R. F. CLIPPINGER

1. Introduction. Let $m n$-by- n matrices, A_{k}, of complex constants, $a_{i j k}(i, j=1,2, \cdots, n ; k=1,2, \cdots, m)$, be given. We shall denote by \mathcal{L} the set of all matrices,

$$
A(t)=\sum_{i=1}^{m} \rho_{i}(t) A_{i},
$$

where $\rho_{i}(t)(i=1,2, \cdots, m)$ are arbitrary, non-negative, summable functions of the real variable t on the interval $T, a \leqq t \leqq b$. We shall call $\mathfrak{J}, \mathcal{S}$, or \mathcal{X} the subsets of \mathcal{L} obtained by restricting the functions $\rho_{i}(t)$ to polynomial functions, step functions, or step functions which are all zero except one. Since, in each case, the elements of $A(t)$ are summable functions of t on T, it follows that, on T, there exists a unique, absolutely continuous matrix solution, ${ }^{1} Y(t)$, of the linear, matrix differential equation and initial condition:

$$
\begin{equation*}
d Y(t) / d t=Y(t) A(t), \quad Y(a)=E \tag{1.1}
\end{equation*}
$$

where E is the n-by- n unit matrix. We shall denote by λ, ι, σ or ξ the set of matrices, $Y(t)$, which are particular values of solutions of (1.1), where $A(t)$ is an arbitrary matrix of $\mathcal{L}, \mathfrak{J}, \mathcal{S}$, or \mathcal{X}, respectively, and t is on T.

If A is a matrix with elements $a_{i j}$, let the absolute value of A and the exponential and natural logarithm of A be defined ${ }^{2}$ by the equations:

$$
\begin{aligned}
|A| & =\left[\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right]^{1 / 2} \\
\exp A & =\sum_{i=0}^{\infty} A^{i} / i! \\
\log A & =\sum_{i=1}^{\infty}(-1)^{i-1}(A-E)^{i} / i, \quad \text { if } \quad|A-E|<1
\end{aligned}
$$

[^0]
[^0]: Presented to the Society, April 18, 1942; received by the editors April 4, 1943, and, in revised form, August 18, 1943. The author wishes to thank Professor G. D. Birkhoff for suggestions which led to this paper.
 ${ }^{1}$ See W. M. Whyburn, On the fundamental existence theorems for differential systems. Ann. of Math. (2) vol. 30 (1928-29) p. 31. We observe that equations (1.1) are equivalent to a system of $2 n$ real, linear, first order differential equations satisfying all the hypotheses of this theorem.
 ${ }^{2}$ See J. v. Neumann, Über die analytischen Eigenschaften von Gruppen linearer Transformationen und ihrer Darstellungen. Math. Zeit. vol. 30 (1929) pp. 6, 7.

