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1. Introduction. Some years ago it was proved [2]1 that the con­
tinued fraction 

(1.1) 1 + — — .-• 
1 + 1 + 

converges if the complex numbers an satisfy the following conditions: 

(1.2) | a2n+11 S 1/4, | a2n | £ 25/4 (n = 1, 2, • • • ). 

Later one of the present authors proved [3] that (1.1) converges if 

(l3) l l + fl.lfcl + M , 
| 1 + an + an+11 è 1 + | Vn-idn I (n « 2, 3, • • • ). 

One of the immediate consequences of this theorem is that if 

| 1 + a21 > 1, | 021 à (2 + m)/(l - w), 

(1.4) | a2n+i | ^ w < 1, I a2n+21 è 2 + w + m \ a2n \ 

(» - 1, 2, 3, • • • ), 
then (1.1) converges. 

Recently Thron [ó] has shown that if 

(1.5) | a2n+i| ^ *2 < 1, U2«| £ (1 + ky + e (e> 0), 

the continued fraction (1.1) converges. For k2<l this result can be 
shown to be a "best" result except possibly for the presence of the 
quantity e. 

The present paper is concerned with establishing convergence cri­
teria of this general type. The principal result is given in Theorem 3.1. 
The method to be used is the following. Denote the nth. approximant 
of (1.1) by An/Bn. Conditions on the numbers an are determined 
which imply that the approximants lie in a given region V of the 
complex plane. A continued fraction the elements of which are func­
tions of the complex variable z and which reduces to (1.1) for 2 = 1 
is then introduced. When the given conditions on the numbers an are 
satisfied the approximants of this continued fraction are shown to 
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1 Numbers in brackets refer to the Bibliography at the end of the paper. 

351 


