The uniqueness of finite geometries with less than 6 points on every line was first proved by J. H. M. Wedderburn and O. Veblen [4]. The uniqueness of finite geometries with 6 points on every line was first demonstrated by C. R. MacInnes [5] in a rather laborious tactical enumeration of cases.

References

1. G. Tarry, Le problème de 36 officiers, Compte Rendu de l'Association Francaise pour l'Advancement de Science Naturel vol. 1 (1900) pp. 122-123, vol. 2 (1901) pp. 170-203.
2. R. C. Bose, On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares. Sankhya, Indian Journal of Statistics, vol. 3 (1938) pp. 323-338.
3. H. B. Mann, The construction of sets of orthogonal Latin squares, Annals of Mathematical Statistics vol. 13 (1942) pp. 418-423.
4. J. H. M. Wedderburn and O. Veblen, Non-Desarguesian and non-Pascalian geometries, Trans. Amer. Math. Soc. vol. 8 (1907) pp. 379-388.
5. C. R. MacInnes, Finite planes with less than eight points on a line, Amer. Math. Monthly vol. 14 (1907) pp. 171-174.

Bard College

SOME THEOREMS ON CO-TERMINAL ARCS

R. H. SORGENFREY

It is the purpose of this note to prove certain properties of sums of simple arcs which have one or both end points in common. The investigation was undertaken to answer a question, that of the validity of Theorem 3 below, raised by Miss Harlan C. Miller. An example is included to show that two of the results obtained are not valid for irreducible continua in general.

Theorem 1. If H and K are two distinct arcs from A to B, then each point of $H+K-H \cdot K$ belongs to a simple closed curve lying in the closure of $H+K-H \cdot K$.

Proof. Let P be any point of $H+K-H \cdot K=N$, and let S be the component of N which contains it. The set S is an arc segment; let its end points be X and Y. Suppose that no simple closed curve lying in \bar{N} contains P. Then $\bar{N}-S$ contains no continuum containing both X and Y, for if it did it would contain an arc from X to Y, and this arc plus S would be a simple closed curve lying in \bar{N} and contain-

[^0]
[^0]: Presented to the Society, December 31, 1941; received by the editors October 29, 1943.

