THE TRANSFORMATION OF ČECH

v. G. GROVE

1. Introduction. The purpose of this paper is to give a simple construction of the general transformation of Cech [1, p. 192]. ${ }^{1}$

Let the differential equations of a surface S be written in the Fubini canonical form [2, p. 123]

$$
\begin{align*}
x_{u u} & =\theta_{u} x_{u}+\beta x_{v}+p x \\
x_{v v} & =\gamma x_{u}+\theta_{v} x_{v}+q x,
\end{align*} \quad \theta=\log (\beta \gamma)
$$

Let the differential equation defining a conjugate net N on S be written in the form

$$
\begin{equation*}
d v^{2}-\lambda^{2} d u^{2}=0 \tag{2}
\end{equation*}
$$

The ray and the associate ray intersect in the canonical point [3, p. 7] of N. The line joining the point x to the canonical point intersects the reciprocal of the Green-Fubini projective normal in a point whose coordinates are

$$
\begin{equation*}
\left(\beta / \lambda^{2}\right) x_{u}-\gamma \lambda^{2} x_{v} . \tag{3}
\end{equation*}
$$

We shall call this point the conjugal point of N at x.
2. Conjugal quadrics. Let the coordinates X of a point X be written in the form

$$
X=x_{1} x+x_{2} x_{u}+x_{3} x_{v}+x_{4} x_{u v}
$$

Then with properly selected unit point, ($x_{1}, x_{2}, x_{3}, x_{4}$) are the coordinates of X referred to the tetrahedron $\left(x, x_{u}, x_{v}, x_{u v}\right)$. The equation of the three-parameter family of quadrics each of which has second order contact [2, p. 142] with S at x is

$$
\begin{equation*}
x_{2} x_{3}+x_{4}\left(-x_{1}+k_{2} x_{2}+k_{3} x_{3}+k_{4} x_{4}\right)=0 \tag{4}
\end{equation*}
$$

The equation of any plane through the conjugal point (3) is

$$
\begin{equation*}
x_{1}-k\left(\gamma \lambda^{2} x_{2}+\left(\beta / \lambda^{2}\right) x_{3}\right)-2 l x_{4}=0 . \tag{5}
\end{equation*}
$$

We shall speak of this plane as the conjugal plane of N at x.
If we impose the condition that the polar plane of the covariant point ($0,0,0,1$) with respect to the quadric (4) be the conjugal plane

Presented to the Society, November 27, 1943; received by the editors December 10, 1943.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

