$$
\frac{\partial u_{p}}{\partial r}=\frac{p u_{p}}{r}+\sum_{k=0}^{n} \beta_{k} u_{p+k}+\left(\frac{2}{r e^{i \theta}}\right) \sum_{k=0}^{m} \sum_{\nu=0}^{m+n} \frac{\alpha_{k} \gamma_{\nu} u_{p+k+\nu+1}}{2 p+2 \nu+1}
$$

if E has the form II; and

$$
\begin{array}{r}
\frac{\partial u_{p}}{\partial r}=\frac{p u_{p}}{r}+\left(\frac{2}{r e^{i \theta}}\right) \sum_{k=0}^{m} \sum_{\nu=0}^{n}\left(\frac{\alpha_{k} \beta_{\nu}}{2 p+2 \nu+1}\right) u_{p+k+\nu+1} \\
+\gamma_{0} u_{p}+\sum_{k=1}^{m+n}\left(\gamma_{k}-\frac{2}{r e^{i \theta}} \gamma_{k-1}\right) u_{p+k}
\end{array}
$$

if E has the form III.

University of Wisconsin at Milwaukee

ON GAUSS' AND TCHEBYCHEFF'S QUADRATURE FORMULAS

J. GERONIMUS

The well known Gauss' Quadrature Formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} G_{k}(x) d \psi(x)=\sum_{i=1}^{n} \rho_{i}^{(n)} G_{k}\left(\xi_{i}^{(n)}\right) \tag{1}
\end{equation*}
$$

is valid for every polynomial $G_{k}(x)$, of degree $k \leqq 2 n-1$, the $\left\{\xi_{i}^{(n)}\right\}$ being the roots of the polynomial $P_{n}(x)$, orthogonal with respect to the distribution $d \psi(x)(i=1,2, \cdots, n ; n=1,2, \cdots) .{ }^{1}$ If the sequence $\left\{P_{n}(x)\right\}$ is that of Tchebycheff (trigonometric) polynomials, then the Christoffel numbers $\rho_{i}^{(n)}, i=1,2, \cdots, n$, are equal, and the two quadrature formulas of Gauss and Tchebycheff coincide:

$$
\begin{equation*}
\int_{-\infty}^{\infty} G_{k}(x) d \psi(x)=\rho_{n} \sum_{i=1}^{n} G_{k}\left(\xi_{i}^{(n)}\right), \quad k \leqq 2 n-1 ; n=1,2, \cdots \tag{2}
\end{equation*}
$$

The converse-that this is the only case of coincidence of these formulas-was proved by R. P. Bailey [1a] and, under more restrictive conditions, by Krawtchouk [1b] (cf. also [2]). ${ }^{2}$

We shall give here four distinct proofs of this statement, without imposing any restrictions on $\psi(x)$.

[^0]
[^0]: Received by the editors June 1, 1943.
 ${ }^{1} \psi(x)$ is a bounded non-decreasing function, with infinitely many points of increase, for which all moments exist: $c_{n}=\int_{--\infty}^{\infty} x^{n} d \psi(x) ; n=0,1,2, \cdots$.
 ${ }^{2}$ Numbers in brackets refer to the bibliography at the end of the paper.

