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The well known Gauss’ Quadrature Formula
) f Gu®dY(x) = X pi Galti”)
—c0 f=1

is valid for every polynomial Gi(x), of degree k<2n—1, the {£"}
being the roots of the polynomial P,(x), orthogonal with respect to

the distribution dy/(x) (¢=1, 2, ..+, n; n=1, 2, - - -)2 If the se-
quence {Pn(x)} is that of Tchebycheff (trigonometric) polynomials,
then the Christoffel numbers p{”, i=1, 2, - - -, n, are equal, and the

two quadrature formulas of Gauss and Tchebycheff coincide:
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The converse—that this is the only case of coincidence of these
formulas—was proved by R. P. Bailey [1a] and, under more restric-
tive conditions, by Krawtchouk [1b] (cf. also [2]).2

We shall give here four distinct proofs of this statement, without
imposing any restrictions on ¥/(x).
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1y(x) is a bounded non-decreasing function, with infinitely many points of in-
crease, for which all moments exist: ¢, = jf L XrdyY(x); n=0,1,2, -,

3 Numbers in brackets refer to the bibliography at the end of the paper.



