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The well known Gauss' Quadrature Formula 

(i) r ° ° G * ( * ) # ( * ) = E p»-w)Gfc(̂
n)) 

is valid for every polynomial G&(#), of degree k£*2n — 1, the {£*n)} 
being the roots of the polynomial Pn(#)> orthogonal with respect to 
the distribution d\l/(x) (i = l, 2, • • • , n; n = l, 2, • • • ).x If the se­
quence {Pn(x)} is that of Tchebycheff (trigonometric) polynomials, 
then the Christoffel numbers p\n\ i = l, 2, • • • , n, are equal, and the 
two quadrature formulas of Gauss and Tchebycheff coincide: 

(2) f ° W ) # ( * ) = PnZG*(^n)), 
J ~oo *—1 

k g 2n - 1; n = 1, 2, 

The converse—that this is the only case of coincidence of these 
formulas—was proved by R. P. Bailey [ la] and, under more restric­
tive conditions, by Krawtchouk [ lb] (cf. also [2]).2 

We shall give here four distinct proofs of this statement, without 
imposing any restrictions on yp(x). 
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1 \p(x) is a bounded non-decreasing function, with infinitely many points of in­

crease, for which all moments exist: c » ^ / ^ #*#(#); w = 0, 1, 2, • • • . 
2 Numbers in brackets refer to the bibliography at the end of the paper. 


