## A RECURRENCE FORMULA FOR THE SOLUTIONS OF CERTAIN LINEAR PARTIAL DIFFERENTIAL EQUATIONS

## MORRIS MARDEN

1. Introduction. In a number of recent papers, Bergman ${ }^{1}$ has developed the theory of operational methods for transforming analytic functions of a complex variable into solutions of the linear partial differential equation

$$
\begin{equation*}
L(U)=U_{z \bar{z}}+a(z, \bar{z}) U_{z}+b(z, \bar{z}) U_{\bar{z}}+c(z, \bar{z}) U=0 \tag{1.1}
\end{equation*}
$$

where $z=x+i y, \bar{z}=x-i y$,

$$
\begin{gathered}
U_{z}=\frac{1}{2}\left(\frac{\partial U}{\partial x}-i \frac{\partial U}{\partial y}\right), \quad U_{z}=\frac{1}{2}\left(\frac{\partial U}{\partial x}+i \frac{\partial U}{\partial y}\right), \\
U_{z \bar{z}}=\frac{1}{4}\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}\right)=\frac{\Delta U}{4}
\end{gathered}
$$

and where the coefficients $a(z, \bar{z}), b(z, \bar{z})$ and $c(z, \bar{z})$ are analytic functions of both variables $z$ and $\bar{z}$. The equation (1.1) is equivalent to the system of two real equations

$$
\begin{gathered}
\Delta U^{(1)}+2 A U_{x}^{(1)}+2 B U_{y}^{(1)}+2 C U_{x}^{(2)}+2 D U_{y}^{(2)} \\
+4 c_{1} U^{(1)}-4 c_{2} U^{(2)}=0 \\
\Delta U^{(2)}-2 C U_{x}^{(1)}-2 D U_{y}^{(1)}+2 A U_{x}^{(2)}+2 B U_{y}^{(2)} \\
+4 c_{2} U^{(1)}+4 c_{1} U^{(2)}=0,
\end{gathered}
$$

where

$$
\begin{array}{lll}
U=U^{(1)}+i U^{(2)} ; & 2 A=(a+\bar{a})+(b+\bar{b}) ; & 2 B=i[(\bar{a}-a)-(\bar{b}-b)] ; \\
c=c_{1}+i c_{2} ; & 2 D=(a+\bar{a})-(b+\bar{b}) ; & 2 C=i[(a-\bar{a})+(b-\bar{b})] .
\end{array}
$$

Presented to the Society, November 26, 1943; received by the editors November 13, 1943. This paper was prepared while the author was a fellow under the Program of Advanced Instruction in Mechanics at Brown University.
${ }^{1}$ S. Bergman, (a) Zur Theorie der Funktionen, die eine lineare partielle Differentialgleichung befriedigen, Rec. Math. (Mat. Sbornik) N.S. vol. 44 (1937) pp. 1169-1198; (b) The approximation of functions satisfying a linear partial differential equation, Duke Math. J. vol. 6 (1940) pp. 537-561; (c) Linear operators in the theory of partial differential equations, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 130-155; (d) On the solutions of partial differential equations of the fourth order, to appear later.

