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1. Introduction. In a number of recent papers, Bergman1 has de
veloped the theory of operational methods for transforming analytic 
functions of a complex variable into solutions of the linear partial 
differential equation 

(1.1) L(U) = Uzi + a(z, z)U, + b(z, z)Ui + c(z, z)U = 0, 

where z=x+iy, z=x—iy, 
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and where the coefficients a(z, z), b{z, z) and c(z, z) are analytic func
tions of both variables z and z. The equation (1.1) is equivalent to the 
system of two real equations 

AU^ + 2Aüf + 2BU™ + 2Cuf + 2DuT 

+ AcxU
W - ÏCiU™ = 0, 

AUW - 2CU? - 2DU™ + 2AV? + UU? 

+ 4c2U + 4ciU = 0, 

where 

U=U™+iU™; 2A = (a+â) + (b+h); 2JB-f[(tf-a)-(8-J)]; 

c=a+ic2; 2D=(a+â)-(b+h); 2C=*i[(a-a) + (b-h)]. 
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