ON THE EQUATION $\chi \alpha=\gamma \chi+\beta$ OVER AN ALGEBRAIC DIVISION RING

R. E. JOHNSON

1. Introduction and notation. The main purpose of this paper is to give necessary and sufficient conditions in order that the equation

$$
\begin{equation*}
\chi \alpha=\gamma \chi+\beta \tag{1}
\end{equation*}
$$

have a solution χ over an algebraic division ring. In case a solution exists, it is given explicitly if it is unique; otherwise, a method of obtaining one of the solutions is given. The application of the results to a quaternion algebra is discussed in the final section.

Let R be a division ring algebraic over its separable ${ }^{1}$ center F, and λ a commutative indeterminate over R. Using the notation of Ore, ${ }^{2}$ a polynomial $a(\lambda) \in R[\lambda]$ of degree n,

$$
\begin{equation*}
a(\lambda)=\alpha_{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{0} \tag{2}
\end{equation*}
$$

will be called reduced if $\alpha_{n}=1$. The unique reduced polynomial $m(\lambda) \in F[\lambda]$ of minimum degree for which $m(\alpha)=0$ will be labelled $m_{\alpha}(\lambda)$. It is apparent that $m_{\alpha}(\lambda)$ is irreducible over $F[\lambda]$. The ring of all elements of R which commute with α will be denoted by R_{α}.

The substitution of an element of R for λ in the polynomial (1) is not well defined, as λ commutes with elements of R, whereas the elements of R do not all commute among themselves. However, unilateral substitution is well defined. We shall use the symbol $a^{r}(\beta)$ to mean that β has been substituted for λ on the right in (2), so that

$$
\begin{equation*}
a^{r}(\beta)=\alpha_{n} \beta^{n}+\alpha_{n-1} \beta^{n-1}+\cdots+\alpha_{0} \tag{3}
\end{equation*}
$$

Left substitution is defined similarly-as there is a complete duality between left and right substitution in our case, we shall discuss right substitution only. If $a^{r}(\beta)=0, \beta$ is called a right root of $a(\lambda)$. The notation $\left.a(\lambda)\right|^{r} b(\lambda)$ is used to mean that $a(\lambda)$ is a right factor of $b(\lambda)$. As is well known, β is a right root of $a(\lambda)$ if and only if $\left.(\lambda-\beta)\right|^{r} a(\lambda)$.
2. Preliminary lemmas. A division algorithm exists over $R[\lambda]$. The particular case of interest here is given by

[^0]
[^0]: Presented to the Society, November 27, 1943; received by the editors September 27, 1943.
 ${ }^{1}$ That is, no irreducible polynomial in $F[\lambda]$ has a multiple root in R.
 ${ }^{2}$ O. Ore, Theory of noncommutative polynomials, Ann. of Math. vol. 34 (1933) pp. 481-508.

