57. P. M. Whitman: Lattices and equivalence relations. Preliminary report.

It is shown that any lattice is isomorphic to a sublattice of the lattice of all equivalence relations on some set. (Received January 28, 1944.)

Analysis
 58. Jesse Douglas: Separable transformations with separable inverse.

All transformations $X=f(x)+h(y), Y=g(x)+k(y)$ are found whose inverses are of the same form. Six essentially different types are obtained. If x, y are interpreted as minimal coordinates $u+i v, u-i v$ (and X, Y similarly), we have all harmonic transformations whose inverses are harmonic. The paper will be published in full. (Received January 15, 1944.)

59. K. O. Friedrichs: The identity of weak and strong extensions of differential operators.

In applying the theory of linear operators in Hilbert spaces or spaces L_{p} to the solution of differential equation problems, it is impossible to retain the meaning of differentiation in the ordinary sense; the concept of differential operator must be extended. Two such extensions offer themselves, a "weak" and a "strong" one, that is, the adjoint of the "formal-adjoint" and essentially the closure. The purpose of the paper is to prove the identity of these two extensions for general linear differential operators. The main tool for the proof is a certain class of smoothening operators approximating unity. They yield the identity of both extensions immediately for differential operators with constant coefficients; they are a strong enough tool to yield this identity likewise for operators with non-constant coefficients. (Received December 3, 1943.)

60. B. M. Ingersoll: On singularities of solutions of linear partial differential equations.

Let $U(z, \bar{z}), z=x+i y, \bar{z}=x-i y, x, y$ real, be a real solution of $L(U) \equiv \Delta U+A U_{x}$ $+B U_{y}+C U=0$, where A, B, and C are entire functions when x and y are extended to complex values. To every such solution corresponds uniquely a complex solution $u(z, \bar{z})=\sum_{z_{m-0}}^{\infty} \sum_{n-0}^{\infty} A_{m n} z^{m \tilde{z}^{n}}$ of $L(U)=0$, with the property that $\sum_{n-0}^{\infty} A_{0 n} \tilde{z}^{n}=\pi U(0,0)$ $\exp \left(-\int_{0}^{z} a(0, \bar{z}) d \bar{z}\right)$, where $a(z, \bar{z}) \equiv(1 / 4)\{A[((z+\bar{z}) / 2,(z-\bar{z}) / 2 i)]+i B[((z+\bar{z}) / 2$, $(z-\bar{z}) / 2 i)]\}$. These solutions were introduced by Bergman (Rec. Math. (Mat. Sbornik) N. S. vol. 2 pp. 1169-1198 and Trans. Amer. Math. Soc. vol. 53 pp. 130155) who showed that the location of the singularities of $u(z, z)$ is determined by the sequence $\left\{A_{m 0}\right\}$. Employing this result the author investigates the relations between sequences $\left\{A_{m k}\right\}, k$ fixed, $m=0,1,2, \cdots$, and the positions of singularities of $u(z, \bar{z})$. For example, using a result of Mandelbrojt (C. R. Acad. Sci. Paris, 1937, pp. 1456-1458) he determines the arguments of the singularities on the circle of convergence of $u(z, \bar{z})$ in terms of the sequence $\left\{A_{m k}\right\}, k$ fixed. In the last section of the paper, using explicitly an integral representation of the complex solutions $u(z, \bar{z})$, the author investigates the real solutions $U(z, \bar{z})=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} D_{m n} z^{m} \bar{z}^{n}$ of $L(U)=0$. He constructs, in terms of $\left\{D_{m k}\right\}, k$ fixed, $m=0,1,2, \cdots$, and some of the deriva-

