ON MINIMUM CIRCUMSCRIBED POLYGONS

C. H. DOWKER

This paper contains the proofs of two theorems on the n-gon M_{n} of minimum area circumscribed about a convex region R in the plane. Theorem 1 shows that the area of M_{n} is a convex function of n and Theorem 3 shows that if R is symmetric about a point there exists an $M_{2 n}$ which is also symmetric. The corresponding theorems on inscribed polygons are also given. These theorems were conjectured by R. B. Kershner.

The symbols a and b with subscripts will be used to represent the sides of circumscribed polygons or the vertices of inscribed polygons. It will be convenient to replace the circular order of the sides (vertices) $a_{0}, a_{1}, \cdots, a_{n-1}$ of a polygon by an artificial linear ordering $a_{0}<a_{1}<\cdots<a_{n-1}<a_{n}$, where a_{n} represents the same side (vertex) as a_{0}. The order of the sides (vertices) of circumscribed (inscribed) polygons is established by the order of the contact points (vertices) on the boundary of the convex region.

Lemma 1. Let $A_{n}=a_{0} a_{1} \cdots a_{n-1}$ and $B_{m}=b_{0} b_{1} \cdots b_{m-1}$ be two polygons circumscribed about the convex region R and let either (1) $a_{0} \leqq b_{0}$ $<b_{1}<a_{1} \leqq a_{r-1} \leqq b_{s-1}<b_{s}<a_{r}$ or (2) $a_{0} \leqq b_{0}<b_{1}<a_{1} \leqq b_{s-1} \leqq a_{r-1}<a_{r}<b_{s}$. Let $C_{n-r+s}=a_{0} b_{1} b_{2} \cdots b_{s-1} a_{r} \cdots a_{n-1}$ and $D_{m-s+r}=b_{0} a_{1} a_{2} \cdots a_{r-1} b_{s}$ $\cdots b_{m-1}$. Then the areas satisfy the inequality $A+B \geqq C+D$ and there is equality if and only if $a_{0}=b_{0}$ and $a_{r-1}=b_{s-1}$.

Proof. The common part of A and B is the common part of C and D. The remaining part of $A+B$ is the remaining part of $C+D$ together with the areas of the quadrilaterals $a_{0} a_{1} b_{0} b_{1}$ and $a_{r-1} a_{r} b_{s-1} b_{s}$. Equality holds if and only if both these areas are zero, that is, if $a_{0}=b_{0}$ and $a_{r-1}=b_{s-1}$.

Lemma 2. If M_{n} is an n-gon of maximum area inscribed in the convex region R, the vertices of M_{n} are contact points of the sides of a circumscribed polygon.

Proof. If $M_{n}=a_{0} a_{1} \cdots a_{n-1}$, the line through a_{1} parallel to the line $a_{0} a_{2}$ is a supporting line of R, for otherwise M_{n} would not have maximum area. Supporting lines determined similarly at all vertices of M_{n} are seen to form a circumscribed polygon.

Lemma 3. Let $A_{n}=a_{0} a_{1} \cdots a_{n}$ and $B_{m}=b_{0} b_{1} \cdots b_{m}$ be two polygons
Received by the editors August 18, 1943.

