versely if the first row is multiplied by the inverse of $c \pmod{p^k}$. This inverse exists, and the correspondence is one-to-one, because c is prime to p. This proves (3).

The sum of the probabilities $P_n(ap^{\alpha}, p^k)$, where *a* runs through the values 1, 2, \cdots , $p^{k-\alpha}$, is clearly the probability that a determinant be divisible by p^{α} . The terms of this sum can be simplified and collected by use of (3), and we have

(11)
$$P_n(0, p^{\alpha}) = \sum_{r=0}^{k-\alpha} \phi(p^{k-\alpha-r}) P_n(p^{\alpha+r}, p^k).$$

Replacing α by $\alpha+1$, and subtracting the resulting equation from (11), we arrive at (4).

PURDUE UNIVERSITY

1944]

ON THE NOTION OF THE RING OF QUOTIENTS OF A PRIME IDEAL

CLAUDE CHEVALLEY

Let \mathfrak{o} be a domain of integrity (that is, a ring with unit element and with no zero divisor not equal to 0), and let \mathfrak{u} be a prime ideal in \mathfrak{o} . We can construct two auxiliary rings associated with \mathfrak{u} : the factor ring $\mathfrak{o}/\mathfrak{u}$, composed of the residue classes of elements of \mathfrak{o} modulo \mathfrak{u} , and the ring of quotients $\mathfrak{o}_{\mathfrak{u}}$, composed of the fractions whose numerator and denominator belong to \mathfrak{o} , but whose denominators do not belong to \mathfrak{u} . These constructions are of paramount importance in algebraic geometry; if \mathfrak{o} is the ring of a variety V, there corresponds to \mathfrak{u} a subvariety U of V; $\mathfrak{o}/\mathfrak{u}$ is the ring of U, whereas the ring $\mathfrak{o}_{\mathfrak{u}}$ is the proper algebraic tool to investigate the neighborhood of U with respect to V.

Now, the local theory of algebraic varieties involves the consideration of rings which are not domains of integrity (this, because the completion of a local ring may introduce zero divisors). Let then \mathfrak{o} be any commutative ring with unit element, and let again \mathfrak{u} be a prime ideal in \mathfrak{o} . We may define the factor ring $\mathfrak{o}/\mathfrak{u}$ exactly in the same way as above, but we cannot so easily generalize the notion of the ring of quotients $\mathfrak{o}_{\mathfrak{u}}$. If there exist zero divisors outside \mathfrak{u} , these zero divisors cannot be used as denominators of fractions, which shows that the definition of $\mathfrak{o}_{\mathfrak{u}}$ cannot be extended verbatim. If we

Received by the editors September 4, 1943.