- ----, Functions differentiable on the boundaries of regions, Ann. of Math. vol. 35 (1934) pp. 482-485.
- Differentiable manifolds, Ann. of Math. vol. 37 (1936) pp. 645-680.
 Differentiable functions defined in arbitrary subsets of Euclidean space, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 309-317. Further references are given here.
- 5. H. O. Hirschfeld, Continuation of differentiable functions through the plane, Quart. J. Math. Oxford Ser. vol. 7 (1936) pp. 1-15.
- 6. M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. vol. 8 (1941) pp. 183-192.

HARVARD UNIVERSITY

THE SYMMETRIC JOIN OF A COMPLEX

C. E. CLARK

- 1. The definition of J. Let K be a polyhedron. With each pair of distinct points p, q of K we associate a closed line segment pq. No distinction is made between p and q and the corresponding end points of pq. The length of pq is a continuous function of p and q, and the length approaches zero if p and q approach a common limit. Distinct segments do not intersect except at a common end point. The points of these segments with their obvious natural topology make up J, the symmetric join of K. This space arises in $[4]^1$ in connection with the problem of finding the chords of a manifold that are orthogonal to the manifold.
- 2. The subdivision of J. Let the mid-point of pq be denoted by $\Lambda p \times q = \Lambda q \times p$, and let $p = \Lambda p \times p$. These points $\Lambda p \times q$ make up the symmetric product S of K. Let the mid-point of the segment from pto $\Lambda p \times q$ be denoted by $p \times q$, and let $p = p \times p$. These points $p \times q$ make up the topological product $P = K \times K$. Consider the closed segment of pq from $p \times q$ to $q \times p$, it being understood that this segment is the point p when p=q. All such segments form the "neighborhood" N_S . Clearly N_S can be homotopically deformed in N_S along the segments pq upon S with S remaining pointwise invariant. Finally consider the closed segment of pq from p to $p \times q$, it being understood that this segment is the point p when p=q. All such segments form the "neighborhood" N_K . Clearly N_K can be homotopically deformed in N_K along the segments pq upon K with K remaining pointwise invariant.

Received by the editors July 23, 1943.

¹ Numbers in brackets refer to the References at the end of the paper.