ON THE EXTENSION OF DIFFERENTIABLE FUNCTIONS

HASSLER WHITNEY

The author has shown previously how to extend the definition of a function of class C^{m} defined in a closed set A so it will be of class C^{m} throughout space (see [1]). ${ }^{1}$ Here we shall prove a uniformity property: If the function and its derivatives are sufficiently small in A, then they may be made small throughout space. Besides being bounded, we assume that A has the following property:
(P) There is a number ω such that any two points x and y of A are joined by an arc in A of length less than or equal to $\omega r_{x y}\left(r_{x y}\right.$ being the distance between x and y).

This property was made use of in [2]; its necessity in the theorem is shown by two examples below.
A second theorem removes the boundedness condition in the first theorem, and weakens the hypothesis (P); its proof makes use of the proof of the first theorem. We remark that in each theorem, as in [1], the extended function is a linear functional of its values in A.

The proof of Theorem I is obtained by examining the proof in [1]; hence we assume that the reader has this paper before him, and we shall follow its notations closely.
Theorem I. Let A be a bounded closed set in n-space E with the property (P), and let m be a positive integer. Then there is a number α with the following property. Let $f(x)$ be any function of class C^{m} in A, with derivatives $f_{k}(x)\left(\sigma_{k}=k_{1}+\cdots+k_{n} \leqq m\right)$. Suppose

$$
\left|f_{k}(x)\right|<\eta \quad\left(x \in A, \sigma_{k} \leqq m\right)
$$

Then $f(x)$ may be extended throughout E so that

$$
\left|f_{k}(x)\right|<\alpha \eta \quad\left(x \in E, \sigma_{k} \leqq m\right) .
$$

Let d be the diameter of A, or 1 if this is larger, and let R be a spherical region of radius $2 d$ with its center at a point of A. Set $f(x)=0$ in $E-R$. Then the extension of f in $R-A$ given in [1] will be shown to have the property, using

$$
\alpha=2 n(m!)^{n}(m+1)^{3 n}\left(433 n^{1 / 2} d \omega\right)^{m} c N
$$

where N and c are as given in $[1, \S \delta 11,12]$. Note that $433=4 \cdot 108+1$.

[^0]
[^0]: Presented to the Society, September 13, 1943; received by the editors November 27, 1943.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of this paper.

