ON THE EXTENSION OF DIFFERENTIABLE FUNCTIONS

HASSLER WHITNEY

The author has shown previously how to extend the definition of a function of class C^m defined in a closed set A so it will be of class C^m throughout space (see [1]).¹ Here we shall prove a uniformity property: If the function and its derivatives are sufficiently small in A, then they may be made small throughout space. Besides being bounded, we assume that A has the following property:

(P) There is a number ω such that any two points x and y of A are joined by an arc in A of length less than or equal to ωr_{xy} (r_{xy} being the distance between x and y).

This property was made use of in [2]; its necessity in the theorem is shown by two examples below.

A second theorem removes the boundedness condition in the first theorem, and weakens the hypothesis (P); its proof makes use of the proof of the first theorem. We remark that in each theorem, as in [1], the extended function is a linear functional of its values in A.

The proof of Theorem I is obtained by examining the proof in [1]; hence we assume that the reader has this paper before him, and we shall follow its notations closely.

THEOREM I. Let A be a bounded closed set in n-space E with the property (P), and let m be a positive integer. Then there is a number α with the following property. Let f(x) be any function of class C^m in A, with derivatives $f_k(x)$ ($\sigma_k = k_1 + \cdots + k_n \leq m$). Suppose

$$|f_k(x)| < \eta$$
 $(x \in A, \sigma_k \leq m).$

Then f(x) may be extended throughout E so that

$$|f_k(x)| < \alpha \eta$$
 $(x \in E, \sigma_k \leq m).$

Let d be the diameter of A, or 1 if this is larger, and let R be a spherical region of radius 2d with its center at a point of A. Set f(x) = 0 in E-R. Then the extension of f in R-A given in [1] will be shown to have the property, using

$$\alpha = 2n(m!)^{n}(m+1)^{3n}(433n^{1/2}d\omega)^{m}cN,$$

where N and c are as given in $[1, \S\$11, 12]$. Note that $433 = 4 \cdot 108 + 1$.

Presented to the Society, September 13, 1943; received by the editors November 27, 1943.

¹ Numbers in brackets refer to the references cited at the end of this paper.