LAMBERT SUMMABILITY OF ORTHOGONAL SERIES

RICHARD BELLMAN

If we define Lambert summability of a series, $\sum_{1}^{\infty} a_{n}$, in terms of the existence of the limit

$$
\begin{equation*}
L\left(a_{n}\right)=\lim _{x \rightarrow 1-0}(1-x) \sum_{1}^{\infty} \frac{n a_{n} x^{n}}{1-x^{n}} \tag{1}
\end{equation*}
$$

we have, by a well known theorem of Hardy-Littlewood [1], ${ }^{1}$ that $C\left(a_{n}\right) \rightarrow L\left(a_{n}\right) \rightarrow A\left(a_{n}\right) ; C\left(a_{n}\right), A\left(a_{n}\right)$ are respectively the Cesàro and Abel means of the series $\sum_{1}^{\infty} a_{n}$.

The proof of $C\left(a_{n}\right) \rightarrow L\left(a_{n}\right)$ is elementary in nature, but the proof of $L\left(a_{n}\right) \rightarrow A\left(a_{n}\right)$ requires the prime number theorem, and conversely the theorem $L\left(a_{n}\right) \rightarrow A\left(a_{n}\right)$ implies the prime number theorem.

For that reason, it is perhaps interesting to show that for orthogonal series of functions $f(x)$, belonging to L^{2}, the inclusion of $L\left(a_{n}\right)$ between $C\left(a_{n}\right)$ and $A\left(a_{n}\right)$ follows in completely elementary fashion.

That $C\left(a_{n}\right) \sim A\left(a_{n}\right)$ for orthogonal series of L^{2} is a known result of Kaczmarz [2]. Hence it is sufficient to show that $L\left(a_{n}\right) \rightarrow C\left(a_{n}\right)$. In addition, it is further known that $C\left(a_{n}\right)$ is equivalent to the convergence of the partial sums of the orthogonal series $s_{2}{ }^{n}(\theta)=\sum_{1}^{2^{n}} a_{k} \phi_{k}(\theta)$ [3] Therefore, finally, it comes to showing that Lambert summability implies the convergence of the partial sums $s_{2}{ }^{n}(\theta)$, in order to prove the theorem.

Let $f(\theta) \subset L^{2}(a, b), a_{n}=\int_{a}^{b} f(\theta) \phi_{n}(\theta) d \theta$; where $\left(\phi_{n}(\theta)\right)$ is an orthonormal sequence in $(a, b), s_{n}(\theta)=\sum_{1}^{n} a_{n} \phi_{n}(\theta)$.

Write, where x is $1-1 / 2^{n}$,

$$
\begin{equation*}
U_{n}(\theta)=\sum_{1}^{\infty} k a_{k} \phi_{k}(\theta) \frac{(1-x) x^{k}}{1-x^{k}}-s_{2^{n}}(\theta)=T_{n}(\theta)+V_{n}(\theta) \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
T_{n}(\theta)=\sum_{1}^{2^{n}} a_{k} \phi_{k}(\theta)\left(\frac{k(1-x) x^{k}}{1-x^{k}}-1\right), \tag{3}\\
V_{n}(\theta)=\sum_{2^{n}+1}^{\infty} k a_{k} \phi_{k}(\theta) \frac{(1-x) x^{k}}{1-x^{k}} \tag{4}
\end{gather*}
$$

If $\lim _{n \rightarrow \infty} U_{n}(\theta)=0$, the result is proven. To that end, consider the
${ }^{1}$ Numbers in brackets refer to the references listed at the end of the paper.

