LAMBERT SUMMABILITY OF ORTHOGONAL SERIES

RICHARD BELLMAN

If we define Lambert summability of a series, $\sum_{n=1}^{\infty} a_n$, in terms of the existence of the limit

(1)
$$L(a_n) = \lim_{x \to 1-0} (1-x) \sum_{1}^{\infty} \frac{n a_n x^n}{1-x^n}$$

we have, by a well known theorem of Hardy-Littlewood [1],¹ that $C(a_n) \rightarrow L(a_n) \rightarrow A(a_n)$; $C(a_n)$, $A(a_n)$ are respectively the Cesàro and Abel means of the series $\sum_{n=1}^{\infty} a_n$.

The proof of $C(a_n) \rightarrow L(a_n)$ is elementary in nature, but the proof of $L(a_n) \rightarrow A(a_n)$ requires the prime number theorem, and conversely the theorem $L(a_n) \rightarrow A(a_n)$ implies the prime number theorem.

For that reason, it is perhaps interesting to show that for orthogonal series of functions f(x), belonging to L^2 , the inclusion of $L(a_n)$ between $C(a_n)$ and $A(a_n)$ follows in completely elementary fashion.

That $C(a_n) \sim A(a_n)$ for orthogonal series of L^2 is a known result of Kaczmarz [2]. Hence it is sufficient to show that $L(a_n) \rightarrow C(a_n)$. In addition, it is further known that $C(a_n)$ is equivalent to the convergence of the partial sums of the orthogonal series $s_{2^n}(\theta) = \sum_{1}^{2^n} a_k \phi_k(\theta)$ [3] Therefore, finally, it comes to showing that Lambert summability implies the convergence of the partial sums $s_{2^n}(\theta)$, in order to prove the theorem.

Let $f(\theta) \subset L^2(a, b)$, $a_n = \int_a^b f(\theta)\phi_n(\theta)d\theta$; where $(\phi_n(\theta))$ is an orthonormal sequence in (a, b), $s_n(\theta) = \sum_{n=1}^n a_n \phi_n(\theta)$.

Write, where x is $1 - 1/2^n$,

(2)
$$U_n(\theta) = \sum_{1}^{\infty} k a_k \phi_k(\theta) \frac{(1-x)x^k}{1-x^k} - s_{2^n}(\theta) = T_n(\theta) + V_n(\theta)$$

where

(3)
$$T_n(\theta) = \sum_{1}^{2^n} a_k \phi_k(\theta) \left(\frac{k(1-x)x^k}{1-x^k} - 1 \right),$$

(4)
$$V_n(\theta) = \sum_{2^{n+1}}^{\infty} k a_k \phi_k(\theta) \frac{(1-x)x^k}{1-x^k} \cdot$$

If $\lim_{n\to\infty} U_n(\theta) = 0$, the result is proven. To that end, consider the

Received by the editors June 10, 1943.

¹ Numbers in brackets refer to the references listed at the end of the paper.