ON SUBHARMONIC FUNCTIONS

MAXWELL READE

If $p(x, y)$ is continuous in a domain (non-null connected open set) \mathcal{D}, then $p(x, y)$ is subharmonic in \mathcal{D} if and only if the inequality

$$
p(x, y) \leqq A(p ; x, y ; r) \equiv \frac{1}{\pi r^{2}} \iint_{D(x, y ; r)} p(x+\xi, y+\eta) d \xi d \eta
$$

holds for all circular discs $D\left(x_{0}, y_{0} ; r\right):\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=\xi^{2}+\eta^{2} \leqq r^{2}$ in \mathcal{D}. If $p(x, y)$ is continuous along with its partial derivatives of the second order in \mathcal{D}, then $p(\dot{x}, y)$ is subharmonic there if and only if $\Delta p(x, y) \geqq 0$ in \mathcal{D}, where Δ is the Laplace operator $[2,3] .{ }^{1}$

If $p(x, y)$ is continuous in \mathcal{D}, then $p(x, y)$ is said to be of class $P L[2]$ in \mathcal{D} provided (i) $p(x, y) \geqq 0$ and (ii) $\log p(x, y)$ is subharmonic wherever $p(x, y) \neq 0$. If $p(x, y) \geqq 0$ and is continuous along with its partial derivatives of the second order, then $p(x, y)$ is of class $P L$ if and only if $p \Delta p-p_{x}{ }^{2}-p_{y}{ }^{2} \geqq 0$ wherever $p(x, y) \neq 0$.

Beckenbach [1] has proved the following theorem characterizing functions of class $P L$.

Theorem A. If $p(x, y) \geqq 0$ in \mathcal{D}, then $p(x, y)$ is of class PL in \mathcal{D} if and only if $\left[(x-\alpha)^{2}+(y-\beta)^{2}\right] p(x, y)$ is subharmonic in \mathcal{D} for every choice of the real constants α, β.

The Beckenbach theorem is comparable to the classic MontelRadó theorem, which was later generalized by Kierst and Saks [3, 4] for functions $p(x, y)$ with continuous partial derivatives of the second order; this generalization is the following theorem.

Theorem B. Let $f(t)$ have a continuous second derivative, with $f^{\prime}(t)>0$, for $-\infty<t<\infty$. If $v(x, y)$ has continuous partial derivatives of the second order in \mathcal{D}, and if the function $f(\alpha x+\beta y+v(x, y))$ is subharmonic in \mathcal{D} for every choice of the real constants α, β, then $v(x, y)$ is subharmonic in \mathcal{D}.

The question arises as to the possibility of exhibiting a Kierst-Saks type of generalization for Beckenbach's Theorem A. Our result is the following.

[^0]
[^0]: Presented to the Society, November 27, 1942, under the title Remarks on a paper of Bechenbach; received by the editors February 26, 1943.
 ${ }^{1}$ The numbers in square brackets refer to references listed in bibliography at end of paper.

