ON SUBHARMONIC FUNCTIONS

MAXWELL READE

If p(x, y) is continuous in a domain (non-null connected open set) \mathcal{D} , then p(x, y) is subharmonic in \mathcal{D} if and only if the inequality

$$p(x, y) \leq A(p; x, y; r) \equiv \frac{1}{\pi r^2} \int \int_{D(x, y; r)} p(x + \xi, y + \eta) d\xi d\eta$$

holds for all circular discs $D(x_0, y_0; r): (x-x_0)^2 + (y-y_0)^2 = \xi^2 + \eta^2 \leq r^2$ in \mathcal{D} . If p(x, y) is continuous along with its partial derivatives of the second order in \mathcal{D} , then $p(\dot{x}, y)$ is subharmonic there if and only if $\Delta p(x, y) \geq 0$ in \mathcal{D} , where Δ is the Laplace operator [2, 3].¹

If p(x, y) is continuous in \mathcal{D} , then p(x, y) is said to be of class PL[2] in \mathcal{D} provided (i) $p(x, y) \ge 0$ and (ii) $\log p(x, y)$ is subharmonic wherever $p(x, y) \ne 0$. If $p(x, y) \ge 0$ and is continuous along with its partial derivatives of the second order, then p(x, y) is of class PL if and only if $p\Delta p - p_x^2 - p_y^2 \ge 0$ wherever $p(x, y) \ne 0$.

Beckenbach [1] has proved the following theorem characterizing functions of class PL.

THEOREM A. If $p(x, y) \ge 0$ in D, then p(x, y) is of class PL in D if and only if $[(x-\alpha)^2+(y-\beta)^2]p(x, y)$ is subharmonic in D for every choice of the real constants α , β .

The Beckenbach theorem is comparable to the classic Montel-Radó theorem, which was later generalized by Kierst and Saks [3, 4] for functions p(x, y) with continuous partial derivatives of the second order; this generalization is the following theorem.

THEOREM B. Let f(t) have a continuous second derivative, with f'(t) > 0, for $-\infty < t < \infty$. If v(x, y) has continuous partial derivatives of the second order in D, and if the function $f(\alpha x + \beta y + v(x, y))$ is sub-harmonic in D for every choice of the real constants α , β , then v(x, y) is subharmonic in D.

The question arises as to the possibility of exhibiting a Kierst-Saks type of generalization for Beckenbach's Theorem A. Our result is the following.

Presented to the Society, November 27, 1942, under the title *Remarks on a paper of Bechenbach*; received by the editors February 26, 1943.

¹ The numbers in square brackets refer to references listed in bibliography at end of paper.