The author is indebted to Professor S. Mandelbrojt, who suggested the existence of the present theorem and gave valuable assistance in its development.

THE RICE INSTITUTE

ON ABEL AND LEBESGUE SUMMABILITY

OTTO SZÁSZ

1. Introduction. A series $\sum_{1}^{\infty} a_n$ is called Abel summable to the value s if the power series $\sum a_n r^n$ converges for 0 < r < 1, and if $\sum a_n r^n \to s$ as $r \uparrow 1$; it is called Lebesgue summable if the sine series

(1.1)
$$\sum_{n=1}^{\infty} a_n \frac{\sin nt}{n} = F(t)$$

converges in some interval $0 < t < \tau$, and if

(1.2)
$$t^{-1}F(t) \to s \text{ as } t \downarrow 0.$$

We write in the first case $A \sum a_n = s$, and in the latter case $L \sum a_n = s$ (summability A or L respectively). It is known that convergence does not imply L-summability and conversely L-summability does not imply convergence of $\sum a_n$. Tauberian type problems which arise out of this situation have been discussed.¹ It is also known that either convergence or L-summability imply A-summability. As to the converse (restricting ourselves to real a_n) we have proved the following theorems:

Тнеокем 1. [8, pp. 582-583]. If

(1.3)
$$\sum_{n}^{2n} (|a_{\nu}| - a_{\nu}) = O(1) \quad as \quad n \to \infty,$$

and if

(1.4)
$$\sum_{n=1}^{\infty} a_n r^n = O(1) \quad as \quad r \uparrow 1,$$

Presented to the Society, December 27, 1942; received by the editors December 16, 1942.

¹ See [8], where further references are given; numbers in brackets refer to the bibliography at the end of this paper.