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ON ABEL AND LEBESGUE SUMMABILITY 

OTTO SZÂSZ 

1. Introduction. A series ̂ ian is called Abel summable to the value 
^ if the power series ^anr

n converges for 0 <r < 1, and if ̂ 2anr
n-^s as 

r Î 1 ; it is called Lebesgue summable if the sine series 

A sin nt 
(1.1) £ a » = F(t) 

î n 

converges in some interval 0 < / < r , and if 

(1.2) t-lF{t)-*s as UO. 

We write in the first case À^dn — s, and in the latter case LX)an = s 
(summability A or L respectively). It is known that convergence 
does not imply Z-summability and conversely L-summability does 
not imply convergence of ]T)a». Tauberian type problems which arise 
out of this situation have been discussed.1 It is also known that either 
convergence or Z-summability imply A -summability. As to the con
verse (restricting ourselves to real an) we have proved the following 
theorems : 

THEOREM 1. [8, pp. 582-583]. If 
In 

(1.3) ]£ (| <h\ — av) = 0(1) as w-r+oo, 
n 

and if 

(1.4) Z>nfw = 0(l) as r î l , 
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1 See [8], where further references are given; numbers in brackets refer to the 
bibliography at the end of this paper. 


