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1. Introduction. This note is the result of some investigations into 
the ternary operation ab^c in a group. We shall assume familiarity 
on the part of the reader with the notions of a group, a one-one 
transformation (we shall use the shorter term permutation) of an 
arbitrary set of elements, an automorphism, and a coset.1 We shall 
use the multiplicative notation for a group G with elements a,b1c1 • • 
We shall also use the following convention for multiplication of per­
mutations. Given two permutations 7\: x—*xTi (i = l, 2), then T\T% 
is x—>(xTi)T2- Finally, we denote automorphisms by small Greek 
letters. 

In §2 we shall review certain properties of the ternary operation 
in a given group, determining all subsets closed with respect to this 
operation and the group of permutations of G which preserve this 
operation. These results had been previously obtained by Reinhold 
Baer.2 

In §§3 and 4 we give postulates for this operation with proofs of 
their independence and consistency. Thus, if a ternary operation 
satisfies these postulates in an arbitrary set of elements, then the 
set may be made into a group (unique within isomorphism) in which 
(abc) = a&~1c. The first set of postulates appears as a weakened form 
of a set given by Baer in his paper,8 in which he mentions the group 
property. This and an equivalent set completely determine the ter­
nary function as ab~lc. However, by further weakening one of these 
postulates, it is possible to get a system which no longer has this last 
property. That is, the group property still holds but the ternary oper­
ation is not determined by the group operation. 

In the remaining sections we get a geometric interpretation of the 
ternary operation and derive therefrom simple conditions on pairs 
of elements (vectors) under which they form a group. In the case 
where an abelian group is desired, the conditions are even simpler, 
reducing essentially to a single law. 
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