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This paper is primarily concerned with fibre mappings! into an
absolute neighborhood retract. Theorem? 3 is a converse of the cover-
ing homotopy theorem; it characterizes fibre mappings (into a com-
pact ANR) as mappings for which the covering homotopy theorem
holds. Theorem 4 is Borsuk’s fibre theorem;? the proof* which I pre-
sent here is new. It seems to me that this theorem is a promising tool
in function-space theory. Also I think that it furnishes conclusive
justification for the generality of the Hurewicz-Steenrod definition
of a fibre space. In fact, a fibre space of the type constructed by
Borsuk’s theorem almost never has a compact base space and almost
never has its fibres of the same topological type.

The common denominator of the proofs of Theorems 3 and 4 is a
property which I call local equiconnectivity. Local equiconnectivity is
a strengthened form of local contractibility and a weakened form of
the absolute neighborhood retract property (Theorems 1 and 2). Defi-
nitions and notations are those of FS. 1.5

Let A be the diagonal subset Y s 5(d, b) of BXB. I shall call the
space B locally equiconnected (or, to be specific, (U, V)-equiconnected)
if there are neighborhoods U and V of A and a homotopy N in B be-
tween the two projections of U which does not move the points of A
and which is uniform?® with respect to V. Precisely:

(1) Ni(bo, by) is defined for all (by, b1) E U,

(2) No(bo, b1) =bo,
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