References

1. Zygmund, Trigonometrical series, chap. 5, p. 123.

2. Ibid., chap. 2, p. 32.

UNIVERSITY OF WISCONSIN

ON FIBRE SPACES. II

RALPH H. FOX

This paper is primarily concerned with fibre mappings¹ into an absolute neighborhood retract. Theorem² 3 is a converse of the covering homotopy theorem; it characterizes fibre mappings (into a compact ANR) as mappings for which the covering homotopy theorem holds. Theorem 4 is Borsuk's fibre theorem;³ the proof⁴ which I present here is new. It seems to me that this theorem is a promising tool in function-space theory. Also I think that it furnishes conclusive justification for the generality of the Hurewicz-Steenrod definition of a fibre space. In fact, a fibre space of the type constructed by Borsuk's theorem almost never has a compact base space and almost never has its fibres of the same topological type.

The common denominator of the proofs of Theorems 3 and 4 is a property which I call *local equiconnectivity*. Local equiconnectivity is a strengthened form of local contractibility and a weakened form of the absolute neighborhood retract property (Theorems 1 and 2). Definitions and notations are those of FS. I.⁵

Let Δ be the diagonal subset $\sum_{b \in B} (b, b)$ of $B \times B$. I shall call the space *B* locally equiconnected (or, to be specific, (U, V)-equiconnected) if there are neighborhoods U and V of Δ and a homotopy λ in *B* between the two projections of U which does not move the points of Δ and which is uniform⁵ with respect to V. Precisely:

(1) $\lambda_t(b_0, b_1)$ is defined for all $(b_0, b_1) \in U$,

(2) $\lambda_0(b_0, b_1) = b_0$,

Received by the editors April 2, 1943.

¹ W. Hurewicz and N. Steenrod, Proc. Nat. Acad. Sci. U. S. A. vol. 27 (1941) p. 61.

² This theorem was announced in Hurewicz-Steenrod, op. cit. footnote 3.

⁸ K. Borsuk, Fund. Math. vol. 28 (1937) p. 99.

⁴ This proof was announced in the author's paper On the deformation retraction of some function spaces \cdots , Ann. of Math. vol. 44 (1943) p. 52.

 $[\]pi(x, b) = (\pi(x), b)$ as in R. H. Fox, On fibre spaces. I, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 555-557.