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This paper is primarily concerned with fibre mappings1 into an 
absolute neighborhood retract. Theorem2 3 is a converse of the cover­
ing homotopy theorem; it characterizes fibre mappings (into a com­
pact ANR) as mappings for which the covering homotopy theorem 
holds. Theorem 4 is Borsuk's fibre theorem;3 the proof4 which I pre­
sent here is new. It seems to me that this theorem is a promising tool 
in function-space theory. Also I think that it furnishes conclusive 
justification for the generality of the Hurewicz-Steenrod definition 
of a fibre space. In fact, a fibre space of the type constructed by 
Borsuk's theorem almost never has a compact base space and almost 
never has its fibres of the same topological type. 

The common denominator of the proofs of Theorems 3 and 4 is a 
property which I call local equiconnectivity. Local equiconnectivity is 
a strengthened form of local contractibility and a weakened form of 
the absolute neighborhood retract property (Theorems 1 and 2). Defi­
nitions and notations are those of FS. I.5 

Let A be the diagonal subset ]C&e#(^ &) °f 5 X 5 . I shall call the 
space B locally equiconnected (or, to be specific, (U, F)-equiconnected) 
if there are neighborhoods U and F of A and a homotopy X in B be­
tween the two projections of U which does not move the points of A 
and which is uniform5 with respect to V. Precisely: 

(1) X*(èo, fa) is defined for all (&0, fa) £ Uy 

(2) Xo(6o, &i)=*o, 
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